שינויים

שדות - תכונות בסיסיות

נוספו 5,900 בתים, 11:14, 25 בנובמבר 2011
 
== הרחבות של שדות ==
'''הגדרה:''' נניח ש-<math>L</math> שדה ו-<math>F,K</math> תת שדות של <math>L</math>. הקומפוזיטום של <math>F,K</math> הוא תת השדה הקטן ביותר המכיל את <math>F,K</math>. הוא יסומן ב-<math>FK</math>.
== איברים אלגבריים וטרנסצנדנטים ==
== איברים אלגבריים וטרנסצנדנטים ==
'''הגדרה:''' תהי <math>K/F</math> הרחבת שדות ו-<math>a\in K</math>. האיבר <math>a</math> נקרא אלגברי מעל <math>F</math> אם קיים פולינום <math>f(x)\neq 0</math> כך ש-<math>f(a)=0</math>. אם לא קיים פולינום כזה, <math>a</math> נקרא טרנסצנדנטי מעל <math>F</math>.
'''מסקנה:''' אם <math>K/F</math> הרחבת שדות ממעלה סופית (כלומר <math>[K:F]<\infty</math> היא הרחבה אלגברית.
 
 
== תרגילים - כדי לראות שהבנתם עד עכשיו ==
'''תרגיל:''' תהי <math>L/F</math> הרחבת שדות ו-<math>a_1,\ldots,a_n\in L</math> אלגבריים מעל <math>F</math>. הראו כי <math>F[a_1,\ldots,a_n]</math> שדהוהמימד שלו מעל <math>F</math> סופי. הראו כי זה תת השדה הקטן ביותר המכיל את <math>F</math> ואת <math>a_1,\ldots,a_n</math>. (הערה: <math>F[a_1,\ldots,a_n]</math> מוגדר באופן אינדוקטיבי ע"י <math>F[a_1,\ldots,a_n]=F[a_1,\ldots,a_{n-1}][a_n]</math>. קיימות גם הגדרות שקולות אחרות.)
'''תרגיל:''' תהי <math>L/F</math> הרחבת שדות, <math>a_1,\ldots,a_n\in L</math> אלגבריים מעל <math>F</math> ו-<math>F\subseteq K\subseteq L</math>. הוכיחו כי הקומפוזיטום של <math>F[a_1,\ldots,a_n]</math> ו-<math>K</math> הוא <math>K[a_1,\ldots,a_n]</math>.
 
 
== איברים אלגבריים - מבט מעמיק ==
 
'''טענת עזר:''' תהי <math>K/F</math> הרחבת שדות ו-<math>a,b\in K</math> אלגבריים. אזי <math>F[a,b]/F</math> הרחבה אלגברית.
 
'''הוכחה:''' לפי טענה מקודם מספיק להראות ש-<math>[F[a,b]:F]<\infty</math>. מתקיים <math>[F[a,b]:F]=[F[a,b]:F[a]]\cdot [F[a]:F]</math> ולכן מספיק להראות סופיות של כל אחד מהגורמים במכפלה. לפי אותה טענה <math>[F[a]:F]<\infty</math> כי <math>a</math> אלגברי מעל <math>F</math>. בנוסף, <math>b</math> אלגברי מעל <math>F</math> ולכן גם מעל <math>F[a]</math>. כעת, אותה טענה גם אומרת כי <math>[F[a,b]:F[a]]<\infty</math> ולכן גמרנו.
 
'''מסקנה:''' אם <math>K/F</math> הרחבת שדות ו-<math>a,b\in F</math> אלגבריים מעל <math>F</math>, אז גם <math>ab,a+b</math> אלגבריים מעל <math>F</math>.
 
'''תרגיל:''' בהנחות של המסקנה, אם <math>a\neq 0</math> אז גם <math>a^{-1}</math> אלגברי.
 
'''מסקנה:''' תהי <math>K/F</math> הרחבת שדות. נסמן ב-<math>A</math> את כל האיברים ב-<math>K</math> שאלגבריים מעל <math>F</math>. אזי <math>A</math> שדה. למעשה, <math>A</math> הוא תת השדה הגדול ביותר של <math>K</math> שאלגברי מעל <math>F</math>.
 
'''דוגמא:''' לפי מה שעכשיו הראינו, אוסף האיברים האלגבריים מעל <math>\mathbb{Q}</math> ב-<math>\mathbb{C}</math> הוא שדה. (למעשה, זה הסגור האלגברי של <math>\mathbb{Q}</math>.)
 
'''דוגמא:''' יהי <math>F</math> שדה ויהי <math>K=F(t)</math> (שדה השברים של <math>F[t]</math> = שדה הפונקציות הרציונליות במשתנה <math>t</math>). אזי האיברים האלגבריים מעל <math>K</math> הם רק השדה <math>F</math>.
 
'''טענה:''' יהיו <math>F\subseteq K\subseteq L</math> שדות כך ש-<math>K/F</math> הרחבה אלגברית. אזי איבר <math>a\in L</math> הוא אלגברי מעל <math>K</math> אם ורק אם הוא אלגברי הוא אלגברי מעל <math>F</math>.
 
'''הוכחה:''' כוון אחד ברור מאליו -- אם <math>a</math> אלגברי מעל <math>F</math> אז הוא גם אלגברי מעל <math>K</math>. הכוון השני לא טריוויאלי. נניח ש-<math>a</math> אלגברי מעל <math>K</math> אזי קיים פולינום <math>0\neq f(x)\in K[x]</math> כך ש-<math>f(a)=0</math>. יהיו <math>b_0,b_1,b_2,\ldots,b_n\in K</math> מקדמי הפולינום <math>f</math>. היות ו-<math>K/F</math> הרחבה אלגברית, אז כל האיברים <math>b_0,b_1,\ldots,b_n</math> אלגבריים מעל <math>F</math>. לכן, לפי תרגיל מקודם, <math>K_0=F[b_0,\ldots,b_n]</math> הוא שדה ממימד סופי מעל <math>F</math>. בנוסף, <math>f(x)\in K_0[x]</math> ולכן <math>a</math> אלגברי מעל <math>K_0</math>. לפי טענה ממקודם, זה אומר ש-<math>[K_0[a]:K_0]<\infty</math>. לכן <math>[K_0[a]:F]=[K_0[a]:K_0]\cdot [K_0:F]<\infty</math>. לפי מסקנה מקודם, זה אומר שההרחבה <math>K_0[a]/F</math> אלגברית ולכן <math>a</math> אלגברי מעל <math>F</math>.
 
'''הערה:''' בהוכחה היינו צריכים להגדיר את <math>K_0</math> כי לא היה נתון ש-<math>[K:F]<\infty</math>.
 
'''מסקנה:''' תהי <math>K/F</math> הרחבת שדות ויהי <math>A</math> שדה האיברים ב-<math>K</math> שאלגבריים מעל <math>F</math>. יהי <math>A'</math> שדה האיברים ב-<math>K</math> שאלגבריים מעל <math>A</math>. אזי <math>A=A'</math>.
 
 
== שדות סגורים אלגברית ==
 
'''הגדרה:''' שדה <math>F</math> נקרא סגור אלגברית אם לכל <math>f(x)\in F[x]</math> ממעלה 1 או יותר קיים <math>a\in F</math> כך ש-<math>f(a)=0</math>. (כלומר, לכל פולינום ממעלה 1 או יותר מעל <math>F</math> יש שורש ב-<math>F</math>.)
 
'''טענה:''' יהי <math>F</math> שדה. אזי התנאים הבאים שקולים:
* <math>F</math> סגור אלגברית
* ל-<math>F</math> אין אף הרחבה אלגברית חוץ מ-<math>F/F</math> (ההרחבה הטריוויאלית).
* כל פולינום ממעלה 1 או יותר מעל <math>F</math> מתפרק לגורמים לינאריים.
 
'''הוכחה:''' תרגיל.
 
'''דוגמא:''' המשפט היסודי של האלגברה אומר ששדה המספרים המרוכבים, <math>\mathbb{C}</math>, הוא סגור אלגברית.
 
'''משפט:''' לכל <math>F</math> קיים שדה <math>K\supseteq F</math> כך ש-<math>K/F</math> הרחבה אלגברית ו-<math>K</math> סגור אלגברית. השדה <math>K</math> יחיד עד כדי איזומורפיזם של שדות.
 
'''סימון:''' את השדה <math>K</math> מהמשפט האחרון נהוג לסמן ב-<math>\overline{F}</math>. שדה זה נקרא ה'''סגור האלגברי של <math>F</math>'''.
 
 
== עוד תרגילים ==
 
'''תרגיל:''' תהי <math>K/F</math> הרחבת שדות ונניח ש-<math>K</math> סגור אלגברית. יהי <math>A</math> שדה האיברים האלגבריים מעל <math>F</math> ב-<math>K</math>. הוכיחו כי <math>A</math> הוא הסגור האלגברי של <math>F</math>.
 
'''תרגיל:''' האם <math>\mathbb{R}</math> סגור אלגברית? מדוע?
 
'''תרגיל:''' יהי <math>F</math> שדה אינסופי. הוכיחו שהעוצמה של <math>\overline{F}</math> שווה לעוצמה של <math>F</math>.
485
עריכות