הבדלים בין גרסאות בדף "שדות - תכונות בסיסיות"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(יצירת דף עם התוכן " == איברים אלגבריים וטרנסצנדנטיים == '''הגדרה:''' יהיה <math>F</math> שדה. הרחבה של <math>F</math> היא כינוי...")
 
שורה 1: שורה 1:
 
  
 
== איברים אלגבריים וטרנסצנדנטיים ==
 
== איברים אלגבריים וטרנסצנדנטיים ==
שורה 5: שורה 4:
 
'''הגדרה:''' יהיה <math>F</math> שדה. הרחבה של <math>F</math> היא כינוי לכל שדה <math>K</math> המכיל את <math>F</math>. לרוב כותבים גם <math>L/K</math>.  
 
'''הגדרה:''' יהיה <math>F</math> שדה. הרחבה של <math>F</math> היא כינוי לכל שדה <math>K</math> המכיל את <math>F</math>. לרוב כותבים גם <math>L/K</math>.  
  
אם <math>K/F</math> היא הרחבת שדות, אז באופן טבעי <math>K</math> הוא מרחב וקטורי מעל <math>F</math>. המימד של <math>K</math> מעל <math>F</math> יסומן ב-<math>[K:F]</math>.
+
אם <math>K/F</math> היא הרחבת שדות, אז באופן טבעי <math>K</math> הוא מרחב וקטורי מעל <math>F</math>. המימד של <math>K</math> מעל <math>F</math> יסומן ב-<math>[K:F]</math> (הוא אינו חייב להיות סופי).
 +
 
 +
'''טענה ("נוסחת המכפלה"):''' יהיו <math>F\subseteq K\subseteq L</math> שדות. אזי <math>[L:F]=[L:K]\cdot[K:F]</math>.
 +
 
 +
'''הרעיון של ההוכחה:''' אם <math>A</math> הוא בסיס ל-<math>L</math> כמרחב וקטורי מעל <math>K</math> ו-<math>B</math> הוא בסיס ל-<math>K</math> כמרחב וקטורי מעל <math>F</math> אז הקבוצה <math>\{ab~|~a\in A, b\in B\}</math> היא בסיס ל-<math>L</math> כמרחב וקטורי מעל <math>F</math> והיא בעלת <math>[L:K][K:F]</math> איברים (זה לא טריוויאלי).
 +
 
  
 
'''הגדרה:''' תהי <math>K/F</math> הרחבת שדות ו-<math>a\in K</math>. האיבר <math>a</math> נקרא אלגברי מעל <math>F</math> אם קיים פולינום <math>f(x)</math> כך ש-<math>f(a)=0</math>. אם לא קיים פולינום כזה, <math>a</math> נקרא טרנסצנדנטי מעל <math>F</math>.
 
'''הגדרה:''' תהי <math>K/F</math> הרחבת שדות ו-<math>a\in K</math>. האיבר <math>a</math> נקרא אלגברי מעל <math>F</math> אם קיים פולינום <math>f(x)</math> כך ש-<math>f(a)=0</math>. אם לא קיים פולינום כזה, <math>a</math> נקרא טרנסצנדנטי מעל <math>F</math>.

גרסה מ־14:45, 24 בנובמבר 2011

איברים אלגבריים וטרנסצנדנטיים

הגדרה: יהיה F שדה. הרחבה של F היא כינוי לכל שדה K המכיל את F. לרוב כותבים גם L/K.

אם K/F היא הרחבת שדות, אז באופן טבעי K הוא מרחב וקטורי מעל F. המימד של K מעל F יסומן ב-[K:F] (הוא אינו חייב להיות סופי).

טענה ("נוסחת המכפלה"): יהיו F\subseteq K\subseteq L שדות. אזי [L:F]=[L:K]\cdot[K:F].

הרעיון של ההוכחה: אם A הוא בסיס ל-L כמרחב וקטורי מעל K ו-B הוא בסיס ל-K כמרחב וקטורי מעל F אז הקבוצה \{ab~|~a\in A, b\in B\} היא בסיס ל-L כמרחב וקטורי מעל F והיא בעלת [L:K][K:F] איברים (זה לא טריוויאלי).


הגדרה: תהי K/F הרחבת שדות ו-a\in K. האיבר a נקרא אלגברי מעל F אם קיים פולינום f(x) כך ש-f(a)=0. אם לא קיים פולינום כזה, a נקרא טרנסצנדנטי מעל F.