הבדלים בין גרסאות בדף "שדות - תכונות בסיסיות"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(הרחבות של שדות)
(איברים אלגבריים וטרנסצנדנטים)
שורה 24: שורה 24:
  
 
'''דוגמא:''' יהיה <math>F</math> שדה ויהי <math>F(t)</math> שדה השברים של <math>F[t]</math>. קל לבדוק כי <math>t</math> טרנסצנדנטי מעל <math>F</math>. למעשה, כל איבר ב-<math>F(t)\setminus F</math> הוא טרנסצנדנטי.
 
'''דוגמא:''' יהיה <math>F</math> שדה ויהי <math>F(t)</math> שדה השברים של <math>F[t]</math>. קל לבדוק כי <math>t</math> טרנסצנדנטי מעל <math>F</math>. למעשה, כל איבר ב-<math>F(t)\setminus F</math> הוא טרנסצנדנטי.
 +
 +
'''הגדרה:''' הרחבת שדות <math>K/F</math> נקראת אלגברית אם כל איבר ב-<math>K</math> אלגברי מעל <math>F</math>.
 +
 +
'''סימון:''' תהי <math>K/F</math> הרחבת שדות ו-<math>a\in K</math>. מסמנים <math>F[a]=\{f(a)~|~f\in F[x]\}</math>.
 +
 +
'''טענה:''' תהי <math>K/F</math> הרחבת שדות ו-<math>a\in K</math>. אזי <math>a</math> אלגברי מעל <math>F</math> אם ורק אם המימד של <math>F[a]</math> כמרחב וקטורי מעל <math>F</math> סופי. במקרה זה <math>F[a]</math> שדה.

גרסה מ־15:08, 24 בנובמבר 2011

הרחבות של שדות

הגדרה: יהיה F שדה. הרחבה של F היא כינוי לכל שדה K המכיל את F. לרוב כותבים גם K/F. באופן טבעי K הוא מרחב וקטורי מעל F. המימד של K מעל F יסומן ב-[K:F] (הוא אינו חייב להיות סופי).

דוגמא: \mathbb{C}/\mathbb{R} היא הרחבת שדות ממימד סופי. \mathbb{R}/\mathbb{Q} היא הרחבת שדות ממימד אינסופי.

טענה: יהיו F\subseteq K\subseteq L שדות. אזי [L:F]=[L:K]\cdot[K:F].

הרעיון של ההוכחה: אם A הוא בסיס ל-L כמרחב וקטורי מעל K ו-B הוא בסיס ל-K כמרחב וקטורי מעל F אז הקבוצה \{ab~|~a\in A, b\in B\} היא בסיס ל-L כמרחב וקטורי מעל F והיא בעלת [L:K][K:F] איברים (זה לא טריוויאלי).

תכונה: אם F שדה אז כל חיתוך של תתי שדות של F הוא גם שדה.

הגדרה: נניח ש-L שדה ו-F,K תת שדות של L. הקומפוזיטום של F,K הוא תת השדה הקטן ביותר המכיל את F,K. הוא יסומן ב-FK.

איברים אלגבריים וטרנסצנדנטים

הגדרה: תהי K/F הרחבת שדות ו-a\in K. האיבר a נקרא אלגברי מעל F אם קיים פולינום f(x) כך ש-f(a)=0. אם לא קיים פולינום כזה, a נקרא טרנסצנדנטי מעל F.

דוגמא: \sqrt{2} הוא אלגברי מעל \mathbb{Q} כי הוא מאפס את x^2-2\in\mathbb{Q}. לעומת זאת, ניתן להוכיח כי המספרים e,\pi הם טרנסצנדנטיים מעל \mathbb{Q}.

הערה: לא קשה להראות כי כמות המספרים המרוכבים האלגבריים מעל \mathbb{Q} היא בת מנייה. לכן, בהכרח קיימים ב-\mathbb{C} (וגם ב-\mathbb{R}) איברים טרנסצנדנטיים. (זו הוכחה לא קונסטרוקטיבית לכך שקיימים מספרים טרנצנדנטיים).

דוגמא: יהיה F שדה ויהי F(t) שדה השברים של F[t]. קל לבדוק כי t טרנסצנדנטי מעל F. למעשה, כל איבר ב-F(t)\setminus F הוא טרנסצנדנטי.

הגדרה: הרחבת שדות K/F נקראת אלגברית אם כל איבר ב-K אלגברי מעל F.

סימון: תהי K/F הרחבת שדות ו-a\in K. מסמנים F[a]=\{f(a)~|~f\in F[x]\}.

טענה: תהי K/F הרחבת שדות ו-a\in K. אזי a אלגברי מעל F אם ורק אם המימד של F[a] כמרחב וקטורי מעל F סופי. במקרה זה F[a] שדה.