שיחה:88-132 תשעג סמסטר א

מתוך Math-Wiki
גרסה מ־15:51, 31 בדצמבר 2012 מאת Lahavs100 (שיחה | תרומות) (תרגיל 9 תיכוניסטים: פסקה חדשה)

קפיצה אל: ניווט, חיפוש

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.


ארכיון

שאלות

הערה לגבי הצגת שאלות

כשמתייחסים לשאלה משיעורי הבית אז בשורת הכותרת פרט למספר התרגיל ולמספר השאלה רצוי מאוד לומר על איזה קבוצה מדובר:מתמטיקאים,תיכוניסטים או מדמ"ח. אחרת, זה יכול לבלבל הן את הסטודנטים והן את המתרגלים. --מני 18:27, 31 באוקטובר 2012 (IST)

(מתמטיקאים) תרגיל 7 שאלה 5

כדי להפריך התכנסות של טור מראים שהאיבר הכללי לא שואף לאפס. השאלה שלי האם אפשר להפריד באיבר הכללי ולהראות פעם אחת על האיבר הכללי הזוגי (כאשר n זוגי) שהוא לא מתכנס לאפס ופעם שניה על האיבר הכללי האי זוגי שהוא לא מתכנס לאפס. האם די בכך כדי לטעון שהאיבר הכללי לא מתכנס לאפס?


היי, מקווה שאני לא טועה ומטעה, אבל לדעתי מספיק להוכיח על אחת מתתי הסדרות (זוגיים או אי זוגיים) שאינה שואפת לאפס, בכדי להוכיח שכל הסדרה שאינה שואפת לאפס. הרי מתקיים: אם סדרה an שואפת ל-l אזי כל תת-סדרה ank שואפת ל-l. וזה בדיוק כמו: אם יש תת-סדרה ank שלא שואפת ל-l, אזי הסדרה an אינה שואפת ל-l.

אגב, יש עוד דרכים להפריך התכנסות של טור (להוכיח שסדרת הסכומים החלקיים לא מתכנסת לגבול סופי או להשתמש באחד מהמבחנים לטורים חיוביים- של קושי וחבריו). בהצלחה.

אפשר בבקשה לפרסם את תרגיל 8 למתמטיקאים?

תודה!

תרגיל מס' 8 שאלה 1

לפי לייבניץ, אם an היא סדרה מונוטונית יורדת של מס' חיובים השואפת ל-0, אזי הטור מתכנס, האם נכון גם לגבי תתי-סדרות, זוגיים ואי-זוגיים? האם ניתן להראות מונוטיות יורדת עבור שני איברים זוגיים ולאחר מכן, עבור שני איברים א"ז? תודה.


(לא מתרגל / מרצה) זה אכן אפשרי, אך זה לא אומר כלום על מונוטוניות הסדרה כולה, שכן יכול להיות שגם הזוגיים וגם האי זוגיים מונוטוניים עולים, אבל לכל n\in\mathbb{N} מתקיים a_{2n}>a_{2n+1}, ואז אין מונוטוניות של הסדרה כולה --גיא 17:40, 23 בדצמבר 2012 (IST)

תרגיל 8 שאלה 5

חסר במקרה נתון של מונוטוניות??.. כי לא ברור איך לפתור.. או שצריך לחלק למיקרים אם Bn מונוטונית ואם לא..


(לא מתרגל / מרצה) לא חסר שום נתון. באיזה כיוון את/ה מתקשה להוכיח? --גיא 06:47, 26 בדצמבר 2012 (IST)

בשני הכיוונים למען האמת, נניח בכיוון הישר הטור An מתכנס בהחלט אז מה זה נותן לי??.. שהסידרה שואפת לאפס אבל לא נתון מונוטונית אז אי אפשר לפי דריכלה כי גם לא נתור שהטור Bn חסום, אבל גם אי אפשר abel כי מי אמר שBn מונוטונית יכולה להיות חסומה ולא מונוטונית... וגם לפי לייבניץ אני לא רואה כיוון כי לא נתון ש An מונוטונית בכלל.. בקיצור איך מתקדמים??..

בכיוון שציינת שווה לנסות להוכיח יותר, עד כמה שזה נשמע מוזר, שהטור \sum_{n=1}^\infty a_nb_n מתכנס אפילו בהחלט לכל סדרה חסומה. אפשר בהקשר זה לחשוב על מבחני התכנסות נוספים. --מני 10:45, 26 בדצמבר 2012 (IST)

תרגיל 8

אם נתונה סדרה חסומה אזי בהכרח הטור של הסדרה חסום???.. ולהיפך?.. אם טור חסום אזי הסדרה חסומה??..


(לא מתרגל / מרצה) בוודאי שלא. לדוגמה ניקח את הטור ההרמוני \sum _{n=1}^\infty \frac{1}{n} - הסדרה \frac{1}{n} חסומה ע"י 1, אבל טורה מתבדר ולכן אינו חסום. לגבי הכיוון השני, אני חושב שגם לו ניתן למצוא הפרכה אבל אני לא בטוח סופית --גיא 06:45, 26 בדצמבר 2012 (IST)

הכיוון השני כן נכון. כי אם קיים M>0 כך ש \forall n \in \mathbb{N} \   M\geq |S_n|

אז \forall n \in \mathbb{N} \   |a_{n+1}|=|S_{n+1}-S_n|\leq |S_{n+1}|+|S_n|\leq 2M. --מני 10:56, 26 בדצמבר 2012 (IST)

זהויות טריגונומטריות

תוכלו בבקשה להעלות קובץ עם הזהויות הטריגונומטריות החיוניות עבורנו? יש בעמוד הראשי קישור לויקיפדיה, אבל יש שם המון זהויות...

תודה

אני לא יודע בשלב זה לספק רשימת זהויות חיוניות. אני מניח שכל הזהויות שניתקלים בהן בהרצאה, תרגול/ש"ב הן הזהויות ההכרחיות. דברים שכן חשובים ואני יכול להצביע עליהם אלו הזהויות של קוסינוס וסינוס זווית כפולה וגם מעבר ממכפלה לסכום (יש טבלה כזו בקישור שציינת). --מני 19:51, 26 בדצמבר 2012 (IST)

שלילת התכנסות טור

האם על סמך התנאי an+1/an>1 ניתן להסיק ש lim an שונה מ-0 ? ובכך לקבוע ישירות התבדרות הטור.

  • (לא מתרגל) כן, כי אם כך (החל ממקום מסוים) איברי הסדרה עולים ממש, וכן חיוביים ולכן לא שואפים ל-0 בטוח. לכן לפי הטענה:

אם הטור מתכנס אז הסדרה שואפת לאפס.

אפשר להסיק שהטור מתבדר.

נכון. תובנה יפה. בהמשך לכך שימו לב שאם התנאי \frac{a_{n+1}}{a_n}>1 מתקיים נניח החל מn_0 אז אם

a_{n_0} שלילי אז התנאי דווקא יגרום לכך שהסדרה מונוטונית יורדת מאותו מקום,וגם אז הגבול לא יכול להיות אפס. כי אם תהיה התכנסות הגבול יהיה קטן או שווה לa_{n_0} שהוא שלילי. --מני 20:02, 26 בדצמבר 2012 (IST)

תרגיל 6 שאלת בונוס (מתמטיקאים)

נתון בשאלה שמתקיים: \lim_{n\to \infty}  (a_{n+1}-a_{n})=0 כלומר, לכל \varepsilon> 0 קיים n_{0} שהחל ממנו \left |a_{n+1}-a_{n}  \right |< \varepsilon

ניסיתי להשתמש בקושי ולטעון: \left | a_{n+p}-a_{n} \right |=\left | a_{n+p}-a_{n+p-1}+a_{n+p-1}-a_{n+p-2}+...+a_{n+1}-a_{n} \right |\leq \left | a_{n+p}-a_{n+p-1} \right |+\left | {n+p-1}-a_{n+p-2} \right |+...+\left | a_{n+1}-a_{n} \right |

ולכל n\geq n_{0} מתקיים:

\left | a_{n+p}-a_{n} \right |< \varepsilon +\varepsilon +...+\varepsilon =p\cdot \varepsilon


נבחר \varepsilon=\frac{\varepsilon _{0}}{p} \Rightarrow \varepsilon \cdot p=\varepsilon _{0}

ונקבל : לכל \varepsilon _{0} (בהתאם לבחירת \varepsilon כרצוננו):


\left | a_{n+p}-a_{n}\right |< \varepsilon _{0}


ולכן, לפי קושי, הסדרה מתכנסת לגבול סופי.

האם זה נכון?

לא. יש בעיה עם הכמתים (קיים,לכל). בהגדרה לפי קושי, אם אשתמש בסימונים שלך צריך להוכיח שלכל \epsilon_0 קיים n_0 כך שלכל n\geq n_0 ולכל p טבעי\left | a_{n+p}-a_{n}\right |< \varepsilon _{0}.

אני אציג מה שלא עובד בהוכחה שציינת. בגדול אי אפשר יהיה לקבוע מהו n_0. למה?

נציב לפי ההצעה שלך p טבעי מסוים ועבור \varepsilon _0 מסוים, \epsilon=\frac{\varepsilon_0}{p} ונשתמש בגבול הנתון ונסיק שקיים n_0 שתלוי ב \varepsilon ולכן תלוי בp כך שלכל n\geq n_{0} ועבור אותו p ספציפי \left | a_{n+p}-a_{n}\right |< \varepsilon _{0}. אבל כדי להוכיח קריטריון קושי צריך שהנ"ל יתקיים לכל p ולא ל p מסויים. אם היינו משנים את p גם n_0 היה יכול להשתנות (כי הוא תלוי ב\varepsilon שתלוי בp).


אגב, אי אפשר להוכיח שקריטריון קושי מתקיים ושהסדרה מתכנסת שכן קיימות דוגמאות נגדיות לסדרות שלא יתכנסו אך עדיין יקימו את התנאי בשאלה. --מני 11:50, 28 בדצמבר 2012 (IST)


נכון. תודה (:

תרגיל 9 תיכוניסטים

הוא מוכר לי מאיפהשהו ;)