שינויים

שיחה:88-211 תשעג סמסטר א/תרגילים

נוספו 7,136 בתים, 19:49, 27 בינואר 2013
/* שאלות ממבחנים */
::כן, הטענה נכונה גם לחבורות אינסופיות. --[[משתמש:לואי פולב|לואי]] 18:49, 3 בינואר 2013 (IST)
 
אפשר הכוונה לאיך מוכיחים כי G=ker*im ?
האם צריך להראות הכלה דו כיוונית או שמה צריך להראות קיום הצגה?
אני לא מצליח להראות שאם g, איבר כלשהו ב G, לא בגרעין של פסיי אזי הוא בהכרח בתמונת פי. אפשר עזרה בנידון?
::הכלה אחת יש לך תמיד. צריך להראות רק הכלה אחת. אני מציע לעשות משהו מאד דומה למה שעשינו בליניארית בשנה שעברה בתרגילים דומים.
אפשר לנסות ללכת הפוך להניח ש<math>g=hk</math> כאשר <math>h</math> בגרעין ו<math>k</math> בתמונה. אפשר מייד לפרש מה זה אומר להיות בתמונה.
אח"כ אפשר לנסות איכשהו להשתמש בנתון כדי לקבל מה צריך להיות <math>h</math> או <math>k</math> (אני לא זוכר מה מהם) ואז מבינים גם מהו השני. בשלב הזה מראים שאם היה פירוק אז זאת היתה הצורה שלו. עכשיו צריך לבדוק שאכן זהו הפירוק הדרוש .--[[משתמש:מני ש.|מני]] 16:05, 6 בינואר 2013 (IST)
 
== תרגיל10, שאלה4 ==
 
תיקון אפשרי: נתקלתי בעוד אפשרות, ומצאתי דוגמה, למקרה שיש איזומורפיות ל<math>\mathbb{Z}_{4}\times\mathbb{Z}_2</math>. תודה.
: '''אנא צטטו את השאלה שאליה אתם מתייחסים'''.
: זה בלתי אפשרי משתי סיבות. ראשית, אם המכפלה הישרה למחצה של Q ב-K היא אבלית, אז גם Q וגם K אבליות, וגם הפעולה מוכרחה להיות טריוויאלית. אבל במקרה כזה המכפלה הישרה למחצה היא בעצם מכפלה ישרה, ולכן שווה ל-<math>\,K\times Q = \mathbb{Z}_{2}\times\mathbb{Z}_2 \times \mathbb{Z}_2</math>.
: שנית, גם K וגם Q הן תת-חבורות של המכפלה הישרה למחצה, והן זרות שם. לכן יש בה לפחות 3+1=4 אברים מסדר 2. אבל בחבורה <math>\mathbb{Z}_{4}\times\mathbb{Z}_2</math> יש רק 3 אברים מסדר 2 (וארבעה מסדר 4: <math>\,(1,0),(1,1),(3,0),(3,1)</math>). [[משתמש:עוזי ו.|עוזי ו.]] 22:18, 5 בינואר 2013 (IST)
 
== אפשר בבקשה לפרסם פתרונות לתרגיל מס'10? ==
 
וגם 9..
תודה!:)
 
::כמובן! ברגע שהגמדים שלנו יסיימו לכתוב אותם...--[[משתמש:לואי פולב|לואי]] 01:00, 11 בינואר 2013 (IST)
 
== תרגיל 12 שאלה 1 (א) ==
 
האם צריך לבוא משהו אחרי הנקודתיים?
 
::כן... :) תכף יתוקן...--[[משתמש:לואי פולב|לואי]] 22:21, 16 בינואר 2013 (IST)
 
== דוגמה נגדית - כל מונואיד קומוטטיבי עם צמצום משאל הוא חבורה ==
 
בתרגול נתתם את הדוגמה-(כפל,N)- לא מובן לי הצמצום משמאל בדוגמה הנ"ל, אשמח לקבל הסבר.
::בדוגמה זו אם <math>ab=ac</math> אז <math>b=c</math> לכן מתקיים צמצום משמאל וזה כמובן מונואיד קומוטטיבי אבל המבנה אינו חבורה כי למעשה פרט ל1 אף איבר לא הפיך. --[[משתמש:מני ש.|מני]] 19:24, 21 בינואר 2013 (IST)
 
== אופן חישוב ציון התרגילים הסופי ==
תודה על ההעלאה המהירה של הציונים לאתר, אבל אופן החישוב שגוי, חישבתם בדף המצורף את הממוצע של 11 התרגילים, ולא תשעת הטובים.
 
== שאלות לקראת המבחן ==
 
1. האם חבורת קליין='A4 ?
 
2. הראה ששוויון המחלקות של החבורה הדיהדרלית D6 הוא- 2+3+3+2+2. ברור לי שהמרכז הוא מגודל 2. ושיש לי עוד שתי מחלקות צמידות מגודל 2 (2^2). מה ההסבר לגבי שתי המחלקות מגודל 3?
 
3.מצא את כל החבורות שיש להן בדיוק 2 מחלקות צמידות. למשל S3 נכון?
 
4. שאלה שהופיעה במבחן- מיין את החבורות האבליות A מסדר 5^2*5^3 כך ש-A/A^3=3^4 ו- 4^2=A/A^4 איך ניגשים לשאלה כזאת?
 
תודה(:
 
 
 
'''תשובות:'''
 
1. כן.
 
2. ההסבר הוא שמסתכלים על האיברים שנותרו (לא הרבה) ורואים שזה אכן מה שקורה.
 
3. לא, כי ב-<math>S_3</math> יש 3 מחלקות צמידות.
 
4. מאוד דומה למה שעשינו בכיתה. שימו לב שהחבורה הכללית ביותר (האבלית) מסדר זה היא מהצורה
<math>\mathbb{Z}_3 \times... \mathbb{Z}_{3^2} \times...\times \mathbb{Z}_{3^5} \times \mathbb{Z}_2 \times... \mathbb{Z}_{2^2}
\times...\times \mathbb{Z}_{2^5}</math>
 
ובהתחלה מספר העותקים של כל אחד מהנ"ל לא ידוע.
כעת, שימו לב ש- <math>A^4</math> זה בעצם <math>4A</math> והיעזרו בתרגיל דומה שפתרנו בכיתה. --[[משתמש:לואי פולב|לואי]] 19:26, 24 בינואר 2013 (IST)
 
בהמשך לשאלה 4, זה ממש כמו שעשינו בתרגול? שהיינו צריכים למצוא את ה-n-ים בסוף? עובדים על כל הפירוק ביחד או מחלקים לפירוק של שתיים ולפירוק של שלוש?
 
== שאלות ממבחנים ==
 
1. קבע האם החבורות איזומורפיות או שאינן איזומורפיות :
 
א. המרכז (c)של (34)(12) ו Z4*Z2
 
ב. Z3*Z4 ותת החבורה הנוצרת על ידי האברים (2,20)ו (9,10) של Z12*Z40
 
2. הראה שהתמורות (456)(123) ו(654)(123) צמודות ב-A6.
 
3. תן דוגמה-
:: א. אוטומורפיזם שאינו פנימי
:: ב. אוטומורפיזם של תת-חבורה, שאינו צמצום אוטומורפיזם של החבורה.
 
תודה(:
 
: 1. א. מדובר על המרכז של (12)(34) בחבורה הסימטרית S_4. המרכז נוצר על-ידי (12), (34) וחבורת הארבעה של קליין, והוא איזומורפי ל-D_4 כפי שראינו כמה פעמים.
: 1. ב. תת-החבורה הזו נוצרת גם על ידי (2,20) ו-(1,10), ולכן נוצרת על-ידי (1,10) שהוא אכן איבר מסדר 12. לכן החבורות איזומורפיות.
: 2. יש להצמיד את (123)(456) ו- (654)(123).
: 3. א. כל אוטומורפיזם של חבורה אבלית, אינו פנימי; תנו לזה דוגמא קונקרטית.
: 3. ב. קחו למשל את תת-החבורה <a^2,b> של החבורה <a,b|a^4=b^2=[a,b]=1> (אבלית מסדר 8). לתת-החבורה יש אוטומורפיזם המחליף את a^2 ו-b, אבל אין אוטומורפיזם של החבורה כולה שעושה דבר כזה, משום ש-a^2 הוא ריבוע של איבר בחבורה, ואילו b אינו ריבוע של אף איבר. [[משתמש:עוזי ו.|עוזי ו.]] 21:42, 27 בינואר 2013 (IST)