שינויים

קפיצה אל: ניווט, חיפוש

תקציר תורת המספרים, סמסטר א תשע״ג

נוספו 1,080 בתים, 20:46, 22 בדצמבר 2012
* <math>U_m:=\{\bar a\in\mathbb Z_m:\ (a,m)=1\}\subset\mathbb Z_m</math>.
* '''פונקציית אוילר''' היא <math>\varphi:\mathbb N^+\to\mathbb N^+</math> עבורה <math>\varphi(1):=1,\ \varphi(m):=|U_m|</math>.
* '''משפט אוילר:''' אם <math>(m,n)=1</math> אז <math>\varphi(mn)=\varphi(m)\varphi(n)</math>.* '''מערכת מלאה מודולו ''m''''' היא קבוצה <math>\{a_i\}_{i=1}^m\subseteq\mathbb Z</math> עבורה <math>\forall a:\ \exists i:\ a\equiv a_i\pmod m</math>. קיים <math>i</math> כנ״ל יחיד לכל <math>a</math>. באופן שקול, המערכת מלאה מודולו <math>m</math> אם <math>\mathbb Z_m=\{\bar a_i\}_{i=1}^m</math>.
* אם <math>\{a_i\}_{i=1}^m</math> מלאה מודולו <math>m</math>, <math>(\alpha,m)=1</math> ו־<math>k</math> שלם אזי <math>\{\alpha a_i+k\}_{i=1}^m</math> מלאה מודולו <math>m</math>.
* '''מערכת מצומצמת מודולו ''m''''' היא קבוצה <math>\{a_i\}_{i=1}^{\varphi(m)}</math> כך ש־<math>\forall\bar a\in U_m:\ \exists i:\ a\equiv a_i\pmod m</math>.
* אם <math>\{a_i\}_{i=1}^{\varphi(m)}</math> מצומצמת מודולו <math>m</math> ו־<math>(\alpha,m)=1</math> אז <math>\{\alpha a_i\}_{i=1}^{\varphi(m)}</math> מצומצמת מודולו <math>m</math>.
* אם <math>\forall i:\ p_i\in\mathcal P\ \and\ p_i^{l_i}\mid\!\mid m</math> אזי <math>\varphi(m)=m\prod_i\left(1-\frac1{p_i}\right)</math>. בפרט, <math>\varphi\!\left(p^l\right)=p^l-p^{l-1}</math>.
* '''משפט גאוס:''' <math>\sum_{d\mid m}\varphi\!\left(\frac md\right)=m</math>.
* '''משפט אוילר:''' אם <math>(a,m)=1</math> אז <math>a^{\varphi(m)}\equiv1\pmod m</math>. ''משפט פרמה'' הוא מקרה פרטי כאשר <math>m</math> ראשוני.
* '''פתרון משוואות פולינומיאליות מעל {{ltr|ℤ<sub>''m''</sub>}}:''' יהי <math>m>1</math> ונרצה לפתור או לבדוק כמה פתרונות יש ל־<math>f(x)\equiv0\pmod m</math> כאשר <math>f(x)\in\mathbb Z[x]</math>.
:* '''משוואה לינארית:''' <math>ax\equiv b</math>. קיים פתרון אם״ם <math>d:=(a,m)\mid b</math>. אם <math>x_0</math> פתרון פרטי של <math>ax\equiv b\pmod{m/d}</math> אז כל הפתרונות הם <math>x\equiv x_0+k\frac md\pmod m</math> כאשר <math>0\le k\le d-1</math>, ויש <math>d</math> פתרונות.