שינויים

קפיצה אל: ניווט, חיפוש

תקציר תורת המספרים, סמסטר א תשע״ג

נוספו 39 בתים, 20:44, 23 בינואר 2013
בקורס זה <math>\mathbb N=\{0,1,2,\dots\}</math> ו־<math>\mathbb N^+=\{1,2,\dots\}</math>. כמו כן, אלא אם צוין אחרת, <math>A^+:=A\cap\mathbb N^+</math>, כל המשתנים והנעלמים שלמים ו־<math>p</math> ראשוני.
== תקציר ==__תוכן__
* '''משפט פיאנו:''' קיימת קבוצה בודדה <math>\mathbb N</math> שעבורה יש פונקציה <math>S:\mathbb N\to\mathbb N</math> המקיימת את אקסיומות פיאנו: <math>S</math> חח״ע, <math>0\not\in\mbox{Im}(S)</math>, <math>0\in\mathbb N</math> ואם <math>K\subseteq\mathbb N</math> מקיימת <math>0\in K\ \and\ (x\in K\iff S(x)\in K)</math> אזי <math>K=\mathbb N</math>.
* <math>\mathbb Z\setminus\{0\}</math> מחולק לשלוש קבוצות: יחידות – <math>U:=\{\pm1\}</math>, ראשוניים – <math>\mathcal P:=\{p\in\mathbb Z\setminus U:\ \forall ab=p:\ a\in U\ \or\ b\in U\}</math> ופריקים – <math>\mathbb Z\setminus\{0\}\setminus U\setminus\mathcal P</math>.
:* לכל <math>a</math> אותו <math>n</math> יחיד מודולו <math>p-1</math> ולכן נקרא "הלוגריתם מודולו <math>p</math> של <math>a</math> לפי <math>g</math>" ומסומן <math>\log_g^{(p)}(a)</math>.
:* כל <math>g</math> כזה נקרא "שורש פרימיטיבי". יש <math>\varphi(p-1)</math> כאלה.
:* {{הערה|הכללה:}} <math>U_n</math> ציקלית אם״ם <math>n\in\{2,4\}\cup\left\{p^k,2p^k:\ p\in\mathcal P\setminus\{2\}\ \and\ k\in\mathbb N^+\right\}</math>.
=== פונקציות אריתמטיות ===
* <math>f:\mathbb N^+\to\mathbb C</math> נקראת פונקציה אריתמטית. בד״כ <math>\mbox{Im}(f)\subseteq\mathbb Z</math>.
* '''קונבולוציית דיריכלה''' בין שתי פונקציות אריתמטיות <math>f,g</math> מוגדרת ע״י <math>(f*g)(n)=\sum_{d\mid n}d(d)g\!\left(\frac nd\right)=\sum_{mk=n}f(m)g(k)</math>. זו פעולה קומוטטיבית ואסוציאטיבית.
* <math>\varphi*\tau=d</math>.
=== חוג השלמים של גאוס ===
האיברים ב־<math>\mathbb Z[\mathrm i]=\mathbb Z+\mathrm i\mathbb Z</math> נקראים שלמים של גאוס. איברי היחידה (כלומר <math>u\in\mathbb Z[\mathrm i]</math> עבורם <math>u^{-1}\in\mathbb Z[\mathrm i]</math>) הם <math>\pm1,\pm\mathrm i</math>.
* אם <math>\alpha\in\mathbb Z[\mathrm i]</math> ו־<math>u</math> יחידה אז <math>\alpha,u\alpha</math> נקראים דומים.
* אם <math>N(\alpha)\in\mathcal P</math> אז <math>\alpha</math> ראשוני של גאוס.
=== פתרון משוואות דיופנטיות ===
* '''משוואה לינארית ב־2 נעלמים:''' נרצה לפתור <math>ax+by=c</math> כאשר <math>x,y</math> משתנים והשאר קבועים. נחלק למקרים:
:* <math>0\ne(a,b)\nmid c</math>: אין פתרון.
:* {{הערה|הכללה:}} אם לא נתון ש־<math>\forall i\ne j:\ (m_i,m_j)=1</math> אז יש פתרון אם״ם <math>\forall i\ne j:\ c_i\equiv c_j\pmod{(m_i,m_j)}</math>.
==== משוואות ריבועיות ====
בפרק זה <math>p\ne2</math> ו־<math>b</math> אי־זוגי.
* אם קיים פתרון ל־<math>x^2\equiv a\pmod p</math> אז <math>a</math> יקרא ''שארית ריבועית'' (ש״ר).
:* <math>\left(\frac{a_1 a_2}b\right)=\left(\frac{a_1}b\right)\left(\frac{a_2}b\right)</math> ו־<math>\left(\frac a{b_1 b_2}\right)=\left(\frac a{b_1}\right)\left(\frac a{b_2}\right)</math>.
:* <math>\left(\frac1b\right)=1</math>, <math>\left(\frac{-1}b\right)=(-1)^\frac{b-1}2</math> ו־<math>\left(\frac2b\right)=(-1)^\frac{b^2-1}8</math>.
:* '''משפט ההדדיות הריבועית:''' אם גם <math>a</math> אי־זוגי אז <math>\left(\frac ab\right)=(-1)^\frac{(a-1)(b-1)}4\left(\frac ba\right)</math>.
* '''למת לגרנז׳:''' <math>-1</math> שארית ריבועית מודולו <math>p</math> אם״ם <math>p\equiv1\pmod4</math>. השורש מודולו <math>p</math> הוא <math>\frac{p-1}2!</math>.
* '''משפט פרמה:''' ל־<math>x^2+y^2=p</math> יש פתרון בשלמים אם״ם <math>p\equiv1\pmod4</math> (או <math>p=2</math>).
* יהי <math>a\not\equiv0\pmod p</math> ונרצה לפתור <math>x^2\equiv a\pmod p</math> כשנתון ש־<math>a</math> שארית ריבועית: <math>x:\equiv\left(\begin{cases}a^\frac{p+1}4,&p\equiv3\pmod 4\\a^\frac{p+3}8,&p\equiv5\pmod8\ \and\ a^\frac{p-1}4\equiv1\pmod p\\2a(4a)^\frac{p-5}8,&p\equiv5\pmod8\ \and\ a^\frac{p-1}4\equiv-1\pmod p\end{cases}\right)\pmod p</math>. למקרה <math>p\equiv1\pmod8</math> יש פתרון אך הוא מורכב ולא נביאו.
===== משוואות פיתגורס =====
נרצה למצוא את הפתרונות השלמים של <math>x^2+y^2=z^2</math>.
* פתרון יקרא פרמיטיבי אם <math>(x,y,z)=1</math>.
* הפתרונות החיוביים (כלומר <math>x,y,z>1</math>) הפרמיטבים הם מהצורות הבאות: יהיו <math>m>n>0</math> זרים. אם הם אי־זוגיים אז <math>x=mn,\ y=\frac{m^2-n^2}2,\ z=\frac{m^2+n^2}2</math> ואם אחד מהם זוגי אז <math>x=2mn,\ y=m^2-n^2,\ z=m^2+n^2</math>.
===== עקומות רציונליות =====
* יהי <math>f</math> פולינום בשני משתנים עם מקדמים רציונלים (כלומר <math>f\in\mathbb Q[x,y]</math>) שאינה פריקה (כלומר אין <math>g,h\in\mathbb C[x,y]</math> לא קבועות כך ש־<math>f=g\cdot h</math>). העקומה <math>C_f:=\{(x,y)\in\mathbb R^2:\ f(x,y)=0\}</math> תקרא רציונלית אם קיימת לה פרמטריזציה <math>\gamma(t)=(x(t),y(t))</math> (למעט, אולי, בכמה נקודות מבודדות) כאשר <math>x,y</math> הם חלוקות של פולינומים במשתנה אחד עם מקדמים רציונלים.
* נניח ש־<math>f</math> לא פריקה ו־<math>\deg(f)=2</math>. אם ל־<math>f(x,y)=0</math> יש פתרון ב־<math>\mathbb Q^2</math> אז <math>C_f</math> רציונלית.
* '''משפט לג׳נדר:''' נרצה לדעת אם ל־<math>ax^2+by^2=c</math> יש פתרון רציונלי כאשר <math>a,b,c\in\mathbb Q</math>. ניתן להניח בה״כ ש־<math>a,b,c</math> שלמים, זרים בזוגות וחופשיים מריבועים. קיים פתרון רציונלי אם״ם <math>-ab</math> ש״ר מודולו <math>c</math>, <math>ac</math> ש״ר מודולו <math>b</math> ו־<math>bc</math> ש״ר מודולו <math>a</math>.
===== משוואות פל =====
יהי <math>m>1</math> שאינו ריבועי. משוואת פל היא <math>x^2-my^2=1</math> כאשר <math>x,y\in\mathbb Z</math>. תמיד קיים הפתרון הטריוויאלי <math>x=1,\ y=0</math>.
* לכל משוואת פל קיים פתרון לא טריוויאלי.
:* {{הערה|הערה:}} בהינתן הפתרון המינימלי נוח לחשב את שאר הפתרונות עם הנוסחה <math>\left(x_0+\sqrt my_0\right)\left(x+\sqrt my\right)=(x_0x+my_0y)+\sqrt m(y_0x+x_0y)</math>.
==== משוואות פולינומיאליות ====
יהי <math>m>1</math> ונרצה לפתור או לבדוק כמה פתרונות יש ל־<math>f(x)\equiv0\pmod m</math> כאשר <math>f\in\mathbb Z[x]</math>.
* '''משוואה לינארית:''' <math>ax\equiv b</math>. קיים פתרון אם״ם <math>d:=(a,m)\mid b</math>. אם <math>x_0</math> פתרון פרטי של <math>ax\equiv b\pmod{m/d}</math> אז כל הפתרונות הם <math>x\equiv x_0+k\frac md\pmod m</math> כאשר <math>0\le k\le d-1</math>, ויש <math>d</math> פתרונות.