הבדלים בין גרסאות בדף "תרגול 12 תשעז"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(פונקציות הפיכות)
שורה 2: שורה 2:
  
 
==פונקציות==
 
==פונקציות==
'''הגדרה:''' יהיו A,B קבוצות וR יחס בינהן. אזי:
+
'''הגדרה:''' יהיו <math>A,B</math> קבוצות ו-<math>R</math> יחס בינהן. אזי:
*התחום של R הינו <math>dom(R)=\{a\in A|\exists b\in B:(a,b)\in R\}=\{(*,\;),(*,\;)\dots \}</math>
+
*התחום של R הינו <math>\mathrm{dom}(R)=\{a\in A|\exists b\in B,(a,b)\in R\}=\{(*,\;),(*,\;)\dots \}</math>
*התמונה של R הינה <math>im(R)=\{b\in B|\exists a\in A:(a,b)\in R\}=\{(\;,*),(\; ,*)\dots \}</math>
+
*התמונה של R הינה <math>\mathrm{im}(R)=\{b\in B|\exists a\in A,(a,b)\in R\}=\{(\;,*),(\; ,*)\dots \}</math>
  
'''הערה''': ישירות מהגדרה  מתקיים כי <math>dom(R)\subseteq A, Im(R)\subseteq B</math>
+
'''הערה''': ישירות מהגדרה  מתקיים כי <math>\mathrm{dom}(R)\subseteq A, \mathrm{im}(R)\subseteq B</math>.
  
'''דוגמא:'''
+
'''דוגמה:'''
*<math>R=\{(1,a),(2,b),(3,a),(a,1)\}</math> אזי התחום הוא <math>dom(R)=\{a,1,2,3\}</math> והתמונה הינה <math>im(R)=\{1,a,b\}</math>
+
*<math>R=\{(1,a),(2,b),(3,a),(a,1)\}</math> אזי התחום הוא <math>\mathrm{dom}(R)=\{a,1,2,3\}</math> והתמונה הינה <math>\mathrm{im}(R)=\{1,a,b\}</math>.
  
 
'''הגדרה:'''  
 
'''הגדרה:'''  
*יחס R מ-A ל-B נקרא '''על''' אם <math>\forall b\in B \exists a\in A:(a,b)\in R</math> כלומר <math>im(R)=B</math>
+
*יחס <math>R</math> מ-<math>A</math> ל-<math>B</math> נקרא '''על''' אם <math>\forall b\in B \exists a\in A:(a,b)\in R</math> כלומר <math>\mathrm{im}(R)=B</math>.
*יחס R מ-A ל-B נקרא '''מלא''' אם <math>\forall a\in A \exists b\in B:(a,b)\in R</math> כלומר <math>dom(R)=A</math>
+
*יחס <math>R</math> מ-<math>A</math> ל-<math>B</math> נקרא '''מלא''' אם <math>\forall a\in A \exists b\in B:(a,b)\in R</math> כלומר <math>\mathrm{dom}(R)=A</math>
*יחס R נקרא '''חד ערכי''' אם <math>[(x,b)\in R] \and [(x,d) \in R] \rightarrow (d=b)</math> כלומר אין איבר מ A שמתאים ל-2 איברים שונים מ B.
+
*יחס <math>R</math> נקרא '''חד ערכי''' אם <math>[(x,b)\in R] \and [(x,d) \in R] \rightarrow (d=b)</math> כלומר אין איבר מ-<math>A</math> שמתאים לשני איברים שונים מ-<math>B</math>.
  
  
שורה 21: שורה 21:
 
יחס חד ערכי ומלא נקרא '''פונקציה'''; נסמן במקרה זה <math>(a,b)\in R\leftrightarrow b=R(a)</math>.  
 
יחס חד ערכי ומלא נקרא '''פונקציה'''; נסמן במקרה זה <math>(a,b)\in R\leftrightarrow b=R(a)</math>.  
 
ובאופן כללי <math>f:A\to B \;\; , a \mapsto f(a)</math>.  
 
ובאופן כללי <math>f:A\to B \;\; , a \mapsto f(a)</math>.  
(A נקרא תחום (הגדרה) של הפונקציה. ו B נקרא הטווח של הפונקציה)
+
(<math>A</math> נקרא תחום (הגדרה) של הפונקציה ו-<math>B</math> נקרא הטווח של הפונקציה.)
  
פונקציה נקראת '''חד-חד''' ערכי אם בנוסף היחס ההפוך הוא חד ערכי.
+
פונקציה נקראת '''חד-חד ערכית''' אם בנוסף היחס ההפוך הוא חד ערכי.
  
 
כלומר:  
 
כלומר:  
  
<math>f</math> חח"ע אמ"מ <math>f(x_1)=f(x_2)\Rightarrow x_1=x_2</math> אמ"מ <math>x_1\neq x_2 \Rightarrow f(x_1)\neq f(x_2)</math>
+
<math>f</math> חח"ע אמ"מ <math>f(x_1)=f(x_2)\Rightarrow x_1=x_2</math> אמ"מ <math>x_1\neq x_2 \Rightarrow f(x_1)\neq f(x_2)</math>.
  
  
 
'''הגדרה:'''
 
'''הגדרה:'''
  
תהא A קבוצה. '''פונקציית הזהות''' היא פונקציה <math>f:A \to A</math> המקיימת <math>\forall a\in A: f(a)=a</math>. נהוג לסמנה: <math>id_A</math> פונקציית הזהות היא חח"ע ועל.
+
תהא <math>A</math> קבוצה. '''פונקציית הזהות''' היא פונקציה <math>f:A \to A</math> המקיימת <math>\forall a\in A: f(a)=a</math>. נהוג לסמנה <math>\mathrm{id}_A</math>. פונקציית הזהות היא חח"ע ועל.
  
למשל:  
+
דוגמאות:
*<math>f:\mathbb{N}\rightarrow\mathbb{Z}</math> כאשר <math>f(p)=p^2</math> ( חח"ע ואינה על)
+
*<math>f:\mathbb{N}\rightarrow\mathbb{Z}</math> כאשר <math>f(p)=p^2</math> (חח"ע ואינה על).
*<math>f:\mathbb{N}\rightarrow\mathbb{N}</math> כאשר <math>f(x)=x-1</math> ( לא מוגדר כי <math>f(1)=?</math>)
+
*<math>f:\mathbb{N}\rightarrow\mathbb{N}</math> כאשר <math>f(x)=x-1</math> (לא מוגדרת כי <math>f(1)=?</math>).
  
 
===תרגיל===
 
===תרגיל===
יהיו A ו-B קבוצות סופיות בעלות עוצמה זהה. הוכח שכל פונקציה מ-A ל-B הינה על אם"ם היא חח"ע
+
יהיו <math>A</math> ו-<math>B</math> קבוצות סופיות בעלות עוצמה זהה. הוכיחו שכל פונקציה מ-<math>A</math> ל-<math>B</math> הינה על אם"ם היא חח"ע.
  
 
'''הוכחה:'''
 
'''הוכחה:'''
נסמן <math>f:A\to B, A=\{a_1,\dots a_n\},B=\{b_1,\dots b_n\} </math> . כאשר כל האיברים ב A שונים זה מזה וכנ"ל ל B
+
נסמן <math>f:A\to B, A=\{a_1,\dots, a_n\},B=\{b_1,\dots, b_n\} </math> . כאשר כל האיברים ב-<math>A</math> שונים זה מזה וכנ"ל ב-<math>B</math>.
  
נניח <math>f </math> חח"ע אזי <math>|\{f(a_1),\dots f(a_n)\}|=n</math>  
+
נניח <math>f</math> חח"ע אזי <math>|\{f(a_1),\dots, f(a_n)\}|=n</math>  
כיוון ש <math>\{f(a_1),\dots f(a_n)\}\subseteq B </math>  ובשניהם יש אותו מספר איברים, מתקיים שיוון ולכן <math>f </math> על.
+
כיוון ש-<math>\{f(a_1),\dots, f(a_n)\}\subseteq B </math>  ובשניהם יש אותו מספר איברים, מתקיים שיוון ולכן <math>f </math> על.
  
נניח  <math>f </math> על. נניח בשלילה ש <math>f </math> אינה חח"ע אזי <math>|\{f(a_1),\dots f(a_n)\}|<n</math> (כי יש שני איברים שנשלחים לאותו מקום)
+
נניח  <math>f </math> על. נניח בשלילה ש-<math>f</math> אינה חח"ע אזי <math>|\{f(a_1),\dots, f(a_n)\}|<n</math> (כי יש שני איברים שנשלחים לאותו מקום) ואז <math>f</math> אינה על, שזו סתירה.  
ואז <math>f </math> אינה על -סתירה.  
+
  
הערה: הדבר אינו נכון אם A וB קבוצות אינסופיות. (מצאו דוגמא)
+
הערה: הדבר אינו נכון אם <math>A</math> ו-<math>B</math> קבוצות אינסופיות. נסו למצוא דוגמה.
  
 
===הרכבת פונקציות===
 
===הרכבת פונקציות===
שורה 56: שורה 55:
  
 
'''הגדרה:'''
 
'''הגדרה:'''
יהיו  <math>f:A\to B, g:B\to C </math> שתי פונקציות אזי '''ההרכבה של <math>g</math> על <math>f</math>''' היא פונקציה  <math>g \circ f:A\to C </math> המוגדרת על ידי הכלל <math>g \circ f(a)=g(f(a)) </math>
+
יהיו  <math>f:A\to B, g:B\to C </math> שתי פונקציות אזי '''ההרכבה של <math>g</math> על <math>f</math>''' היא פונקציה  <math>g \circ f:A\to C </math> המוגדרת על ידי הכלל <math>g \circ f(a)=g(f(a)) </math>.
  
הערה: אם מתיחסים לפונקציות כאל יחסים - מקבלים את ההגדרה של הרכבת יחסים.
+
הערה: אם מתייחסים לפונקציות כאל יחסים - מקבלים את ההגדרה של הרכבת יחסים.
  
 
'''משפט:'''
 
'''משפט:'''
*אם <math>g \circ f</math> חח"ע אזי f חח"ע.
+
*אם <math>g \circ f</math> חח"ע אזי <math>f</math> חח"ע.
*אם <math>g \circ f</math> על אזי g על.
+
*אם <math>g \circ f</math> על אזי <math>g</math> על.
 +
*מסקנה: אם <math>g \circ f</math> חח"ע ועל אזי <math>f</math> חח"ע ו-<math>g</math> על.
  
 
===פונקציות הפיכות===
 
===פונקציות הפיכות===

גרסה מ־16:34, 29 בדצמבר 2017

חזרה לדף מערכי התרגול.

פונקציות

הגדרה: יהיו A,B קבוצות ו-R יחס בינהן. אזי:

  • התחום של R הינו \mathrm{dom}(R)=\{a\in A|\exists b\in B,(a,b)\in R\}=\{(*,\;),(*,\;)\dots \}
  • התמונה של R הינה \mathrm{im}(R)=\{b\in B|\exists a\in A,(a,b)\in R\}=\{(\;,*),(\; ,*)\dots \}

הערה: ישירות מהגדרה מתקיים כי \mathrm{dom}(R)\subseteq A, \mathrm{im}(R)\subseteq B.

דוגמה:

  • R=\{(1,a),(2,b),(3,a),(a,1)\} אזי התחום הוא \mathrm{dom}(R)=\{a,1,2,3\} והתמונה הינה \mathrm{im}(R)=\{1,a,b\}.

הגדרה:

  • יחס R מ-A ל-B נקרא על אם \forall b\in B \exists a\in A:(a,b)\in R כלומר \mathrm{im}(R)=B.
  • יחס R מ-A ל-B נקרא מלא אם \forall a\in A \exists b\in B:(a,b)\in R כלומר \mathrm{dom}(R)=A
  • יחס R נקרא חד ערכי אם [(x,b)\in R] \and [(x,d) \in R] \rightarrow (d=b) כלומר אין איבר מ-A שמתאים לשני איברים שונים מ-B.


הגדרה:

יחס חד ערכי ומלא נקרא פונקציה; נסמן במקרה זה (a,b)\in R\leftrightarrow b=R(a). ובאופן כללי f:A\to B \;\; , a \mapsto f(a). (A נקרא תחום (הגדרה) של הפונקציה ו-B נקרא הטווח של הפונקציה.)

פונקציה נקראת חד-חד ערכית אם בנוסף היחס ההפוך הוא חד ערכי.

כלומר:

f חח"ע אמ"מ f(x_1)=f(x_2)\Rightarrow x_1=x_2 אמ"מ x_1\neq x_2 \Rightarrow f(x_1)\neq f(x_2).


הגדרה:

תהא A קבוצה. פונקציית הזהות היא פונקציה f:A \to A המקיימת \forall a\in A: f(a)=a. נהוג לסמנה \mathrm{id}_A. פונקציית הזהות היא חח"ע ועל.

דוגמאות:

  • f:\mathbb{N}\rightarrow\mathbb{Z} כאשר f(p)=p^2 (חח"ע ואינה על).
  • f:\mathbb{N}\rightarrow\mathbb{N} כאשר f(x)=x-1 (לא מוגדרת כי f(1)=?).

תרגיל

יהיו A ו-B קבוצות סופיות בעלות עוצמה זהה. הוכיחו שכל פונקציה מ-A ל-B הינה על אם"ם היא חח"ע.

הוכחה: נסמן f:A\to B, A=\{a_1,\dots, a_n\},B=\{b_1,\dots, b_n\} . כאשר כל האיברים ב-A שונים זה מזה וכנ"ל ב-B.

נניח f חח"ע אזי |\{f(a_1),\dots, f(a_n)\}|=n כיוון ש-\{f(a_1),\dots, f(a_n)\}\subseteq B ובשניהם יש אותו מספר איברים, מתקיים שיוון ולכן f על.

נניח f על. נניח בשלילה ש-f אינה חח"ע אזי |\{f(a_1),\dots, f(a_n)\}|<n (כי יש שני איברים שנשלחים לאותו מקום) ואז f אינה על, שזו סתירה.

הערה: הדבר אינו נכון אם A ו-B קבוצות אינסופיות. נסו למצוא דוגמה.

הרכבת פונקציות

הגדרה: יהיו f:A\to B, g:B\to C שתי פונקציות אזי ההרכבה של g על f היא פונקציה g \circ f:A\to C המוגדרת על ידי הכלל g \circ f(a)=g(f(a)) .

הערה: אם מתייחסים לפונקציות כאל יחסים - מקבלים את ההגדרה של הרכבת יחסים.

משפט:

  • אם g \circ f חח"ע אזי f חח"ע.
  • אם g \circ f על אזי g על.
  • מסקנה: אם g \circ f חח"ע ועל אזי f חח"ע ו-g על.

פונקציות הפיכות

הערה: לכל פונקציה f מתקיים f\circ \mathrm{id} =f וגם \mathrm{id} \circ f =f.

הגדרה: תהי f פונקציה f:A\rightarrow B. פונקציה g:B\rightarrow A תיקרא הפונקציה ההופכית ל-f אם f\circ g = \mathrm{id}_B וגם g\circ f = \mathrm{id}_A. במקרה זה נסמן את g על ידי f^{-1}, ונאמר שהפונקציה f היא הפיכה.

תרגיל (בהרצאה):

הוכיחו כי פונקציה f הפיכה אם"ם היא חח"ע ועל.

הוכחה:

אם f הפיכה, אזי f\circ f^{-1} = \mathrm{id}_B וגם f^{-1}\circ f = \mathrm{id}_A. מכיוון שפונקציית הזהות הינה חח"ע ועל, נובע ש-f חח"ע ועל לפי משפט קודם.

אם f חח"ע ועל, אז נגדיר g:B\to A ע"י: עבור a\in A קיים (כי f על) b\in B יחיד (כי f חח"ע) כך ש-f(a)=b . נגדיר g(b):=a. תרגיל: בדקו כי g היא ההופכית של f.