שינויים

תרגול 2 תשעז

נוספו 1,607 בתים, 23:58, 27 באוקטובר 2017
/* כמתים */
לעומתה הטענה השניה טוענת שניתן למצוא סטודנט אחד (לפחות) שהוא חרוץ (אם רוצים להוכיח את הטענה צריך למצוא סטודנט שהוא חרוץ ואם רוצים להוכיח כי הטענה לא נכונה צריך לעבור בין כל הסטודנטים ולוודא שהם אינם חרוצים).
'''====תרגיל:''' ====הצרן: לכל מספר p גדול מ-1: (p ראשוני) אמ"מ (אם הוא מחלק מכפלת מספרים אז הוא מחלק את אחד המספרים).
פתרון:
* <math>P(x)</math> הוא הפרדיקט "<math>x</math> הוא ראשוני".
* <math>Q(x)</math> הוא הפרדיקט <math>\forall a,b : p|ab \Rightarrow (p|a \lor p|b)</math>
 
הערה: שמות המשתנים אינם חשובים למשל עבור הפרדיקט <math>S(x,y)</math> המוגדר <math>x\leq y</math> הפסוק <math>\forall x\forall y S(x,y)</math> הוא זהה לפסוק <math>\forall t\forall s S(t,s)</math>.
הערה: סדר הכמתים כן משנה (לפעמים) למשל <math>\exist x\forall y S(x,y)</math> לא שקול לפסוק <math>\forall y \exist x S(x,y)</math>.
'''סימון:''' נעיר שיש דרכים רבות לכתוב פסוקים כגון אלו. מקובל למשל <math>\forall x P(x)</math>, <math>(\forall x)P(x)</math> או <math>\forall x, P(x)</math>. כל הסגנונות חוקיים, בתנאי שהפסוק ניתן לקריאה באופן חד-משמעי.
 
הערה: לכל כמת יש אזור תחולה. בתוך אזור תחולה שמות המשתנים אינם חשובים. למשל עבור הפרדיקט <math>S(x,y)</math> המוגדר <math>x\leq y</math> הפסוק <math>\forall x\forall y S(x,y)</math> הוא זהה לפסוק <math>\forall t\forall s S(t,s)</math>.
 
====תרגיל====
 
שימו לב שגם למשתנים בהגדרות יש אזור תחולה. צריך לשים לב לא להתבלבל באזורים האלו, וכדי למנוע "התנגשויות" בשמות, פשוט נחליף אותם. למשל נגדיר מספר <math>x</math> להיות '''דו־ריבועי''' אם קיימים <math>y,z</math> כך ש-<math>x=y^2+z^2</math>. הוכיחו שלכל זוג מספרים <math>x,y</math> אם הם מספרים דו־ריבועיים, אז גם המספר <math>xy</math> הוא דו־ריבועי.
 
פתרון: נגדיר את הפרדיקט <math>Q(x)</math> להיות T אם ורק אם <math>x</math> הוא מספר דו־ריבועי (הצרינו זאת!). אנו נדרשים להוכיח את הטענה <math>\forall x\forall y:(Q(x) \land Q(y)) \rightarrow Q(xy)</math>.
 
לפי ההגדרה, אם <math>x</math> הוא דו־ריבועי, אז קיימים <math>a,b</math> כך ש-<math>x=a^2+b^2</math>, ובאופן דומה אם <math>y</math> דו־ריבועי, אז קיימים <math>c,d</math> כך ש-<math>y=c^2+d^2</math>. כדי להוכיח ש-<math>xy</math> הוא גם דו־ריבועי, יש להראות שקיימים <math>e,f</math> כך ש-<math>xy=e^2+f^2</math>. נעזר בזהות <math>(a^2+b^2)(c^2+d^2) = (ac-bd)^2+(ad+bc)^2</math>. לכן קיבלנו <math>xy = (ac-bd)^2+(ad+bc)^2</math>, ומכאן שנוכל לבחור את <math>e,f</math> הדרושים לנו להיות <math>e=ac-bd</math>, <math>f=ad+bc</math>.
==שלילת פסוקים==
1,211
עריכות