תרגול 5 מדמח קיץ תשעז

מתוך Math-Wiki
גרסה מ־20:17, 21 באוגוסט 2017 מאת אריאל (שיחה | תרומות) (יחסי סדר)

קפיצה אל: ניווט, חיפוש

חזרה למערכי התרגול

יחסי סדר

הגדרה: יחס R על A נקרא אנטי-סימטרי אם מתקיים \forall x,y\in A:[(x,y)\in R]\and[(y,x)\in R] \rightarrow (x=y)

כלומר, אם x\neq y אז לא יכול להיות שמתקיים היחס בין x לבין y וגם היחס בין y לx.

הגדרה: יחס R על A נקרא יחס סדר חלקי אם R רפלקסיבי, טרנזיטיבי ואנטי-סימטרי

דוגמאות ליחסי סדר חלקי:

  • היחס 'קטן-שווה' על המספרים
  • היחס 'מוכל-שווה' על הקבוצות
  • היחס 'מחלק את ' על הטבעיים

נוכיח ש"מחלק את" על הטבעיים הינו יחס סדר חלקי:

רפלקסיבי: כל מספר מחלק את עצמו.

טרנזיטיבי: אם a|b\land b|c זאת אומרת ש-b=ak\land c=bm ולכן c=a(km) מה שאומר ש-a|c.

אנטי סימטרי: אם a|b\land b|a זאת אומרת ש- a=bk\land b=am ולכן a=a(mk), כיון ש-m,k\in \mathbb{N} נקבל m=k=1 מה שאומר ש-a=b.

הערה: היחס "מחלק את" על השלמים איננו יחס סדר חלקי, כיון שמתקיים, למשל, ש- -2|2\land 2|-2\land 2\neq -2.


הגדרה. דיאגרמת הסה Hesse הינה דיאגרמה של יחס סדר חלקי על קבוצה. כל איבר המקושר לאיבר מתחתיו 'גדול' ממנו ביחס. נצייר את דיאגרמת הסה ליחס הכלה על קבוצת החזקה של הקבוצה A=\{1,2,3\}.


הגדרות. יהיו A קבוצה וR יחס סדר חלקי על הקבוצה:

  • איבר x\in A נקרא מינמלי ביחס לR אם \forall y\in A:(y,x)\in R \rightarrow y=x. כלומר, אין איבר 'קטן' מx. לא חייב להתקיים ש-x ביחס כלשהו עם איבר כלשהו.
  • איבר x\in A נקרא מקסימלי ביחס לR אם \forall y\in A:(x,y)\in R \rightarrow y=x. כלומר, אין איבר 'גדול' מx. לא חייב להתקיים ש-x ביחס כלשהו עם איבר כלשהו.
  • איבר x\in A נקרא קטן ביותר ביחס לR אם \forall y\in A:(x,y)\in R. כלומר, x 'קטן' מכל האיברים. x חייב להיות ביחס עם כל האיברים בקבוצה. (דוגמא: הקבוצה הריקה תחת יחס הכלה)
  • איבר x\in A נקרא גדול ביותר ביחס לR אם \forall y\in A:(y,x)\in R. כלומר, x 'גדול' מכל האיברים. x חייב להיות ביחס עם כל האיברים בקבוצה. (דוגמא: הקבוצה B תחת יחס ההכלה על קבוצת החזקה של B)

הערה: קל להוכיח מתוך תכונת האנטי-סימטריות שאם קיים איבר קטן ביותר הוא יחיד (למרות שהוא לא חייב להיות קיים), ונכון הדבר לגבי הגדול ביותר.

הערה: מינימום \leftarrow מינימלי, וכן מקסימום \leftarrow מקסימלי, ולא להיפך!

תרגיל

תהא A קבוצה וR יחס סדר חלקי מעליה. הוכח או הפרך: אם a\in A איבר מינימלי יחיד אז a הוא קטן ביותר.

פתרון

הפרכה. דוגמה נגדית: נגדיר יחס R מעל A=\mathbb{Z}\cup\left\{ \left\{ 1\right\} \right\} , בצורה הבאה: aRb אם"ם a,b\in\mathbb{Z}\land a\leq b \lor a=b=\left\{ 1\right\} .

ראשית, צ"ל שזה יחס סדר חלקי:

רפלקסיביות: לכל a\in A אם a=\left\{ 1\right\} אזי לפי ההגדרה aRa וכן אם a\in\mathbb{Z} גם כן מתקיים aRa.

אנטי סמטריות: אם \left(a,b\right),\left(b,a\right)\in R אזי אם a=\left\{ 1\right\} אזי לפי ההגדרה a=b (כי a לא מתייחס לאף אחד אחר חוץ מלעצמו, לפי ההגדרה). אם a\in\mathbb{Z} אזי בהכרח לפי הגדרת היחס גם b\in\mathbb{Z} ואם a\leq b\land b\leq a בשלמים אז בהכרח a=b.

טרנזטיביות: אם \left(a,b\right),\left(b,c\right)\in R אזי אם a=\left\{ 1\right\} אזי לפי ההגדרה a=b=c וכמובן \left(a,c\right)=\left(a,a\right)\in R. אם a\in\mathbb{Z} אזי בהכרח לפי הגדרת היחס גם b\in\mathbb{Z} ולכן גם c\in\mathbb{Z} ומתקיים a\leq b\leq c ובפרט \left(a,c\right)\in R.

כעת, נראה שיש מינימלי יחיד שאינו קטן ביותר: \left\{ 1\right\} הוא איבר מינימלי יחיד בקבוצה. מינימלי כי פרט לעצמו אף איבר לא ניתן להשוואה עימו, ולכן אין שונה ממנו שקטן ממנו, ואין עוד מינימלי כי \forall a\in\mathbb{Z}:a-1<a. הוא לא הקטן ביותר כי אף איבר לא ניתן להשוואה עימו, וכלן לא מתקיים שהוא קטן מכולם (הוא לא קטן מאף שלם).

הערה: \left\{ 1\right\} הוא גם מקסימלי יחיד שאינו גדול ביותר.


דוגמא

נביט בקבוצה A=\{1,2,3,4,5\} ונגדיר עליה יחס סדר חלקי:

R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(2,4),(1,2),(1,4),(3,2),(3,4),(5,2),(5,4)\}

(הזוגיים 'גדולים' מכל אי הזוגיים ומהזוגיים הקטנים מהם)

  • 5,3,1 הינם איברים מינימליים שכן אין איבר שקטן מאף אחד מהם. הם אינם מינימום כי אף אחד מהם לא קטן מכל האיברים האחרים.
  • 4 הינו מקסימום של הקבוצה, הוא בוודאי מקסימלי
  • 2 קטן מחלק מהאיברים וגדול מאחרים לכן הוא כלום.


הגדרות. תהי A קבוצה, ותהי B קבוצה המוכלת בה ויהי R יחס סדר חלקי:

  • חסם מלעיל של B הוא איבר x\in A כך שמתקיים \forall y\in B:(y,x)\in R
  • חסם מלרע של B הוא איבר x\in A כך שמתקיים \forall y\in B:(x,y)\in R
  • החסם העליון (סופרמום) של B הינו האיבר הקטן ביותר בקבוצת חסמי המלעיל (אם קיים). מסומן sup(B)
  • החסם התחתון (אינפימום) של B הינו האיבר הגדול ביותר בקבוצת חסמי המלרע (אם קיים). מסומן inf(B)

דוגמאות

דוגמא.

נשוב לדוגמא הקודמת. נביט בתת הקבוצה המכילה את המספרים האי זוגיים בלבד B=\{1,3,5\}. קבוצת חסמי המלעיל של B הינה \{2,4\}. המינימום של קבוצה זו הוא 2 ולכן הוא החסם העליון של B. אין חסם מלרע ל-B ולכן בוודאי אין לה חסם תחתון.

דוגמא. נביט במספרים הממשיים ובתת הקבוצה של כל המספרים עם מספר סופי של ספרות ששווים לספרות הראשונות של שורש 2. B=\{1,1.4,1.41,1.414,1.4142,...\}. חסמי המלעיל של הקבוצה הינם כל המספרים שגדולים או שווים לשורש 2 ואילו שורש 2 הוא החסם העליון של הקבוצה.

שימו לב, אם נביט בקבוצה B כתת קבוצה של המספרים הרציונאליים, חסמי המלעיל שלה יהיו כל האיברים הגדולים משורש 2 אך מכיוון ששורש 2 אינו רציונאלי, אין לB חסם עליון.

דוגמא. נביט בקבוצת הטבעיים, ובתת קבוצה סופית שלה B. נביט ביחס "מחלק את". הסופרמום של B הוא המכפלה המשותפת המינימלית (lcm), והאינפימום הוא המחלק המשותף המקסימלי(gcd).

למשל sup\{12,33,10\}=lcm(12,33,10)=3\cdot 4 \cdot 11 \cdot 5, inf\{12,33,10\}=gcd(12,33,10)=1


תרגיל

הוכיחו: אם x חסם מלרע של B וגם x\in B אזי inf(B)=x (וגם ב B יש איבר קטן ביותר שהוא x).

פתרון

צריך להראות ש- x גדול ביותר בקבוצת חסמי המלרע של B. יהי y חסם מלרע של B, לכן, לכל b\in B מתקיים ש- y\leq b, ובפרט עבור x\in B נקבל y\leq x. זוהי בדיוק ההגדרה של גדול ביותר.

בנוסף, יהי b\in B, כיון ש-x חסם מלרע נקבל x\leq b, ולכן x קטן ביותר ב-B.

הגדרה. יהי R יחס סדר חלקי על A. אם לכל שני איברים a,b בA מתקיים [(a,b)\in R]\or[(b,a)\in R] אזי R נקרא יחס סדר מלא.

תרגיל ממבחן

הגדרה: תת קבוצה A של המספרים הממשיים נקראת 'מגניבה' אם לכל x,y בA כך ש-x שונה מ-y מתקיים שההפרש x-y אינו רציונאלי.

תהי B קבוצה מגניבה מקסימלית ביחס להכלה, הוכח שלכל מספר ממשי שאינו שייך לB קיים איבר בB כך שההפרש בינהם הוא רציונאלי.

הוכחה.

נניח בשלילה שקיים איבר ממשי r שאינו בB, ולכל איבר b ב-B ההפרש r-b אינו רציונאלי. לכן אם נוסיף את r ל-B נקבל קבוצה מגניבה המכילה ממש את B (ולא שווה לה) בסתירה למקסימאליות של B.

יחס סדר מילוני

יהיו (A,\leq),(B,\preceq) שתי קבוצות סדורות חלקית.

על A\times B ניתן להגדיר את היחס המילוני R ע"י

(a_1,b_1)R(a_2,b_2)\iff (a_1 < a_2) \lor (a_1 = a_2 \land b_1 \preceq b_2)

דוגמא

נסתכל על \mathbb{N}\times \mathbb{N} אם הסדר המילוני.

נגדיר B = \{(1,x) | x\in \mathbb{N} \} אזי sup(B)=(2,1),inf(B)=(1,1)

נגדיר B = \{(x,1) | x\in \mathbb{N} \} אזי inf(B)=(1,1) ו sup לא קיים.

  • שימו לב ש (1,1) הוא איבר קטן ביותר

מכפלה של יחסי סדר

יהיו (A,\leq),(B,\preceq) שתי קבוצות סדורות חלקית.

על A\times B ניתן להגדיר את היחס R הבא:

(a_1,b_1)R(a_2,b_2)\iff (a_1 \leq a_2) \land ( b_1 \preceq b_2)

זהו יחס סדר:

הוכחה:

1. רפקלסיביות: לכל a,b מתקיים כי $a\leq a, b\preceq b$ ולכן (a,b)R(a,b)

2. אנטי סימטריות: אם (a,b)R(a1,b1) וגם (a1,b1)R(a,b) אז a\leq a1, b\preceq b1 וגם a1\leq a, b1 \preceq b, כיוון שאלו יחס סדר נקבל כי a=a1,b=b1

3. טרנז' - תרגיל

דוגמא

נסתכל על \mathbb{N}\times \mathbb{N} אם הסדר המוגדר לעיל.

נגדיר B = \{(1,x) | x\in \mathbb{N} \} אזי inf(B)=(1,1) ו sup לא קיים

נגדיר B = \{(x,1) | x\in \mathbb{N} \} אזי inf(B)=(1,1) ו sup לא קיים.

  • שימו לב ש (1,1) הוא איבר קטן ביותר

תרגיל (ממבחן קיץ תשעה מועד ב)

תהא X קבוצת כל הסדרות הבינאריות (סדרה בינארית היא a_1a_2a_3\dots כאשר a_n\in \{0,1\}). נגדיר יחס R על X כך: עבור a=a_1a_2\dots ,b=b_1b_2\dots \in X

aRb \iff \; \forall n\; a_n-b_n \neq (-1)^n

א. הוכיחו ש R יחס סדר על X

ב. קבעו האם R יחס סדר מלא על X

ג. מצאו (אם קיימים) איבר קטן וגדול ביותר ב X (ביחס ל R)

פתרון

דרך שקולה לתאר את היחס שמפשטת את השאלה היא כך

aRb \iff \big( \forall k \; a_{2k}=1 \Rightarrow b_{2k}=1, \; a_{2k-1}=0\Rightarrow b_{2k-1}=0\big)

כלומר במיקומים הזוגיים, אם a שווה 1 אז זה גורר ש b שווה 1

ובמיקומים האי זוגיים, אם a שווה 0 אז זה גורר ש b שווה 0

א. תרגיל לבד!

ב. לא סדר מלא, למשל a=000\dots, b=111\dots לא מתייחסים זה לזה.

ג. קימיים, M=010101\dots הינו איבר הגדול ביותר כי לכל a מתקים aRM

m=101010\dots הינו איבר קטן ביותר כי לכל a מתקים mRa

תרגיל (מבוחן תשעג)

יהא A קבוצה ו R\subseteq A\times A יחס סדר מלא עליה. נגדיר O להיות קבוצת כל יחסי הסדר החלקיים על A, סדורה ע"י הכלה. (כלומר הזוג (O,\subseteq) - במילים אחרות, חושבים על O עם יחס הסדר החלקי "הכלה")

הוכח: R איבר מקסימלי ב O

פתרון- יהי S\in O יחס סדר חלקי על A המקיים R\subseteq S צ"ל R=S

נניח בשלילה כי R מוכל ממש ב S

אזי קיים (a,b)\in S\land(a,b)\notin R. כיוון ש R יחס מלא אזי מתקיים (b,a)\in R כיוןן ש R\subseteq S נובע כי (b,a)\in S

מכיוון ש S יחס סדר חלקי (בפרט אנטי סימטרי) אזי a=b (כי גם (a,b)\in S) אזי קיבלנו כי ּ(a,a)=(a,b)\notin R סתירה לכך ש R יחס סדר מלא ובפרט רפלקסיבי.


האם ב O יש מקסימום (איבר גדול ביותר)?

תשובה: לא. נניח שקיים איבר מקס' S. כיוון שגם R^{-1}\in O יחס אזי R\cup R^{-1} \subseteq S. בפרט אם (a,b)\in R שונים (נניח שב A יש 2 איברים לפחות) אזי (b,a)\in R^{-1} ולכן (a,b),(b,a)\in S בניגוד לכך ש S אנטי סימטרי