שינויים

תרגול 6 תשעז

נוספו 587 בתים, 19:17, 9 ביולי 2019
/* פתרון */
=המשך קבוצות=
 
===תרגיל===
הוכיחו כי <math>A\cap (B\setminus C)=(A\cap B) \setminus (A\cap C)</math>.
 
===פתרון===
דרך גרירות לוגיות:
 
<math>x\in A\cap (B\setminus C) \iff</math>
<math>(x\in A) \and [(x\in B) \and (x\notin C)] \iff</math>
<math>[(x\in A) \and (x\in B) \and (x\notin C)] \or [(x\in A) \and (x\in B) \and (x\notin A)] </math>
 
בשורה האחרונה הוספנו סתירה בעזרת הקשר "או" ולכן נשארנו עם ביטוי שקול. כעת נשתמש בחוק הפילוג של הלוגיקה:
 
<math>\iff [(x\in A) \and (x\in B)]\and [(x\notin C)\or(x\notin A)]\iff</math>
<math>[(x\in A) \and (x\in B)]\and \neg [(x\in C)\and(x\in A)]</math>
 
וזה בדיוק מה שרצינו.
 
הוכחה נוספת בעזרת הכלה דו כיוונית:
 
בכיוון (<math>\subseteq</math>) נניח <math>x\in A\cap(B\backslash C)</math>, ולכן
 
<math>x\in A \land x\in B \land x\not\in C \Rightarrow</math>
 
<math>x\in A\cap B \land x\not\in A\cap C \Rightarrow</math>
 
<math>x\in (A\cap B) \backslash (A\cap C)</math>
 
בכיוון (<math>\supseteq</math>) נניח <math>x\in (A\cap B) \backslash (A\cap C)</math>. לכן
 
<math>x\in A\cap B \land x\not\in A\cap C \Rightarrow</math>
 
<math>x\in A \land x\in B \land x\not\in C \Rightarrow</math>
 
(כי אם <math>x\in C</math> אז <math>x\in A\cap C</math> סתירה)
 
<math>x\in A\cap(B\backslash C)</math>
== משלים ==
הוכיחו כי <math>A \triangle B = A^c \triangle B^c</math>.
====פתרון====
נשתמש בהצגת ההפרש הסימטרי כאיחוד ההפרשים:
<math>(x\notin B^c \land x\in A^c)\lor (x\notin A^c \land x\in B^c) \iff</math>
<math>(x\in A^c \land x\notin B^c)\lor (x\in B^c \land x\notin A^c) \iff x\in A^c \triangle B^c</math>
 
===תרגיל===
לכל <math>n\in \mathbb{N}</math> נגדיר <math>A_n=\{k\in \mathbb{N}|2\leq k\leq 2n-1\}</math> ונגדיר <math>B_n=A_{n+1}\smallsetminus A_n</math>.
 
א. מצאו את <math>\bigcup_{n\in \mathbb{N}} B_n</math>.
 
ב. נגדיר <math>D_n=\mathbb{N}\smallsetminus B_n</math>. מצאו את <math>\bigcap_{n\in \mathbb{N}} D_n</math>.
 
====פתרון====
 
א. התשובה: <math>\mathbb{N}\smallsetminus \{1\}</math>. הוכחה:
 
<math>\bigcup_{n\in \mathbb{N}} B_n \subseteq \mathbb{N}\smallsetminus \{1\} </math>: הכל תת קבוצות של הטבעיים וכל הקבוצות מוגדרות ע"י איברים הגדולים מ-<math>2</math>.
 
<math>\mathbb{N}\smallsetminus \{1\} \subseteq \bigcup_{n\in \mathbb{N}} B_n</math>: יהי <math>a\in \mathbb{N}\smallsetminus \{1\}</math> נמצא קבוצה בה הוא נמצא. נשים לב ש-<math>B_n=\{2\leq k\leq 2n+1\}\smallsetminus \{2\leq k\leq 2n-1\}=\{2n,2n+1\}</math>. לכן אם <math>a</math> זוגי הוא נמצא ב- <math>B_{\frac{n}{2}}</math> ואם אי-זוגי אז <math>a\in B_{\frac{n-1}{2}}</math>.
 
ב. נתייחס ל-<math>\mathbb{N}</math> כקבוצה האוניברסלית לדיוננו. לפי דה-מורגן נקבל:<math>\bigcap_{n\in \mathbb{N}} D_n=\bigcap_{n\in \mathbb{N}} B_n^c=(\bigcup_{n\in \mathbb{N}} B_n)^c=\{1\}</math>.
==קבוצת החזקה==
'''הגדרה''': תהי קבוצה <math>A</math>. נגדיר את '''קבוצת החזקה''' של <math>A</math> בתור אוסף כל תת הקבוצות של <math>A</math>. נסמן <math>P(A)=\{X:X\subseteq A\}</math>.
 
דוגמה: נבחר <math>A=\{1,2\}</math> אזי
<math>P(A)=\{\{\},\{1\},\{2\},\{1,2\}\}</math>.
האם אתם יכולים למנות כמה איברים יש בקבוצת החזקה? הוכיחו זאת באינדוקציה.
 
===תרגיל===
הוכיחו או הפריכו: <math>A\cap P(P(A))=\varnothing</math>.
 
====פתרון====
הפרכה : ניקח <math>A=\{1,\{\{1\}\}\}</math>.
 
===תרגיל===
הוכיחו או הפריכו:
 
א. <math>P(A)\cap P(B)=P(A\cap B)</math>
 
ב. <math>P(A)\cup P(B)=P(A\cup B)</math>
 
====פתרון====
 
א. הוכחה: <math>X\in P(A)\cap P(B) \iff X\subseteq A\land X\subseteq B\iff</math>
 
<math>X\subseteq A\cap B\iff X\in P(A\cap B)</math>
 
ב. הפרכה: ניקח <math>A=\{1\},B=\{2\}</math>. אז <math>\{1,2\} \in P(A\cup B)</math>, אבל לא ל-<math>P(A)\cup P(B)</math>.
 
למעשה הוכיחו כי <math>P(A)\cup P(B)=P(A\cup B)</math> אם ורק אם <math>A\subseteq B</math> או <math>B\subseteq A</math>.
===תרגיל ממבחן===
2,232
עריכות