שינויים

קפיצה אל: ניווט, חיפוש

83-112 חדו"א 1 להנדסה/נושאי הקורס

הוסרו 10,291 בתים, 09:40, 23 בנובמבר 2020
/* נושאי ההרצאות */
[[קטגוריה:מערכי לימוד]]
=מבחנים מהעבר=
*[[מדיה: BIU_Hedva1_15_A.pdf|מבחן מועד א תשע"ו]]
*[[מדיה:18EngHedva1TestB.pdf|מבחן מועד ב' תשע"ח]]
*[[מדיה:18EngHedva1TestC.pdf|מבחן מועד ג' תשע"ח]]
*[[מדיה:19EngHedva1TestA.pdf|מבחן מועד א' תשע"ט]]
**[[מדיה:19EngHedva1TestASol.pdf|פתרון מבחן מועד א' תשע"ט]]
*[[מדיה:19EngHedva1TestB.pdf|מבחן מועד ב' תשע"ט]]
*[[מדיה:19AvivEngHedva1TestA.pdf|מבחן מועד א' סמסטר אביב תשע"ט]]
*[[מדיה:19AvivEngHedva1TestB.pdf|מבחן מועד ב' סמסטר אביב תשע"ט]]
*[[מדיה:20EngHedva1TestA.pdf|מבחן מועד א' תש"ף]]
**[[מדיה:20EngHedva1TestASol.pdf|פתרון מבחן מועד א' תש"ף]]
=נושאי ההרצאותקבצי PDF של שיעורי הבית שנמצאים ב XI (וב XI מגישים!)=שימו לב: נושאי ההרצאות יעודכנו במהלך הסמסטר לפי קצב ההתקדמות בפועל.==הרצאה 1==*מבוא למספרים - טבעיים, שלמים, רציונאליים, ממשיים.*שורש 2, 0.999.*חזקות.*לוגריתמים.*מבוא לגבולות שבתרגלי ה XI יש חלקים שמוגרלים רנדומית ולכן קבצי ה PDF לא יראו אחד לאחד כמו התרגילים ב XI (שיטות אלגבריות: כפל בצמודהתבנית תהיה זהה, הוצאת חזקה משמעותיתהמספרים לא בהכרח).**<math>\lim_{x\to 2}\frac{x^2-4}{x-2}</math>**<math>\lim_{x\to\infty}\frac{2x^2+5x+3}{3x^2-100}</math>**<math>\lim_{x\to \infty}\sqrt{x^2+x+1}-x,\lim_{x\to \infty}\sqrt{x^2+1}-x</math>**<math>\lim_{x\to\infty}x^2-x</math>
==הרצאה 2==
*כמתים, שלילת כמתים.
*חסמים.
==הרצאה 3==
*ברציונאליים אין לכל קבוצה חסומה מלעיל חסם עליון.
*הגדרת הגבול של סדרה במובן הצר.
==הרצאה 4==
*גבול הוא יחיד[[מדיה:BIU_Eng_Hedva1_2021a_ex1.pdf|תרגיל 1]]**נניח בשלילה שיש שני גבולות שונים. החל משלב מסויים כל איברי הסדרה גדולים מאמצע הקטע בין שני הגבולות וגם קטנים ממנו, בסתירה[[מדיה:BIU_Eng_Hedva1_2021a_ex2.pdf|תרגיל 2]]*הסדרה הקבועה[[מדיה:BIU_Eng_Hedva1_2021a_ex3.pdf|תרגיל 3]]*כל סדרה המתכנסת במובן הצר חסומה[[מדיה:BIU_Eng_Hedva1_2021a_ex4.*אריתמטיקה (חשבון) גבולות.**(אי שיוויון המשולש.)**סכום.**מכפלה.**חלוקה (pdf|תרגיל לבית).4]]
==הרצאה 5==*התכנסות במובן הרחב[[מדיה:BIU_Eng_Hedva1_2021a_ex5.pdf|תרגיל 5]]*אחד חלקי 'שואפת לאינסוף' היא אפיסה, ההפך לא נכון[[מדיה:BIU_Eng_Hedva1_2021a_ex6.pdf|תרגיל 6]]*סנדביץ' וחצי סדנביץ'[[מדיה:BIU_Eng_Hedva1_2021a_ex7.pdf|תרגיל 7]]*<math>a_n\to 0 \iff [[מדיה:BIU_Eng_Hedva1_2021a_ex8.pdf|a_n|\to 0</math>תרגיל 8]]*חסומה כפול אפיסה היא אפיסה[[מדיה:BIU_Eng_Hedva1_2021a_ex9.pdf|תרגיל 9]]
=נושאי ההרצאות=הרצאה 6==*אינדוקציה.*ברנולי - אקספוננט חיובי שואף לאפס, אחד או אינסוף.*אריתמטיקה מורחבת (הכתיב הוא מקוצר ואינו מדוייק):**חסומה כפול אפיסה = אפיסה**חסומה חלקי אינסוף = אפיסה**<math>\infty+\infty=\infty</math>**<math>\infty\cdot\infty=\infty</math>**<math>\infty^\infty=\infty</math>**<math>\frac{1}{0}\neq\infty</math>**<math>\frac{1}{0^+}=\infty</math>**<math>0^\infty = 0</math>**אינסוף כפול סדרה השואפת למספר חיובי = אינסוף.**אינסוף כפול סדרההשואפת למספר שלילי = אינסוף.**יש גבול סופי + אין גבול סופי = אין גבול סופי.**אינסוף ועוד חסומה שווה אינסוף.**אם <math>a>1</math> אזי <math>a^\infty=\infty</math>*המקרים הבעייתיים בהם צריך להפעיל מניפולציות אלגבריות או משפטים על מנת לחשב את הגבול:**<math>\frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,\infty-\infty,0^0,\infty^0,1^\infty</math>*מבחן המנה (ללא הוכחה).*הגבול של השורש הn של n. ==הרצאה 7==*סדרה מונוטונית וחסומה מתכנסת.*[[המספר e]].*<math>2<e<4</math>.*אם <math>a_n\to\infty</math> אזי <math>\left(1+\frac{1}{a_n}\right)^{a_n}\to e</math>**<math>[a_n]\leq a_n \leq [a_n]+1</math>, כאשר <math>[a_n]</math> הוא המספר השלם הגדול ביותר שקטן או שווה ל<math>a_n</math>.**<math>\left(1+\frac{1}{[a_n]+1}\right)^{[a_n]}\leq\left(1+\frac{1}{a_n}\right)^{a_n}\leq \left(1+\frac{1}{[a_n]}\right)^{[a_n]+1}</math>**שני הצדדים שואפים לe ולכן לפי כלל הסנדוויץ הסדרה אכן שואפת לe.*אם <math>a_n\to -\infty</math> אזי <math>\left(1+\frac{1}{a_n}\right)^{a_n}\to e</math>**ראשית <math>\left(1-\frac{1}{n}\right)^{n}\to \frac{1}{e}</math> (הוכחה בקישור לערך על המספר e).**כעת חזקה שלילית הופכת את השבר, וניתן לסיים את ההוכחה באופן דומה להוכחה במקרה הקודם.  *אם <math>a_n\to 1</math> אזי <math>a_n^{b_n}\to e^{\lim b_n\cdot(a_n-1)}</math>**<math>a_n^{b_n}=\left[\left(1+(a_n-1)\right)^{\frac{1}{a_n-1}}\right]^{ b_n\cdot (a_n-1)}</math>.**<math>\left(1+(a_n-1)\right)^{\frac{1}{a_n-1}}\to e</math> בין אם <math>a_n-1</math> שלילי או חיובי, לפי הטענות לעיל.**שימו לב שאם <math>a_n=1</math>, אז ממילא מקבלים 1 בנוסחא הסופית, ואז לא צריך לחלק ב<math>a_n-1</math> ששווה אפס.
[https://www.youtube.com/playlist?list=PLHinTfsAOC-uvgGra7BmwUGKi21DW9SOX פלייליסט של כל הסרטונים הקצרים]
*דוגמא[https:**<math>\lim\left(\frac{n+1}{n-2}\right)^n//www.youtube.com/playlist?list=e^{\lim n\cdot\left(\frac{n+1}{nPLzSjdxrZD_hltzlnH9FvT-2}-1\right)}=e^{\lim\frac{3n}{n-2}}=e^3</math>1NICRjcASiu פלייליסט של ההרצאות תשפ"א]
==הרצאה 8==
*פונקציות וגבולות של פונקציות, לפי קושי ולפי היינה.
==הרצאה 9==
*הגדרת סינוס וקוסינוס ע"י מעגל היחידה.
**<math>sin^2(x)+cos^2(x)=1</math>
**<math>sin(-x)=-sin(x),cos(-x)=cos(x)</math>
**<math>sin(a+b)=sin(a)cos(b)+sin(b)cos(a),cos(a+b)=cos(a)cos(b)-sin(a)sin(b)</math>
**<math>sin(2x)=2sin(x)cos(x),cos(2x)=cos^2(x)-sin^2(x)</math>
==הרצאות 1-2 חסמים==
פרק 1 ב[[חדוא 1 - ארז שיינר|קישור הבא]] (https://calc1.math-wiki.com)
== הרצאות 3-7 סדרות==
פרק 2 ב[[חדוא 1 - ארז שיינר|קישור הבא]] (https://calc1.math-wiki.com), הטיפול בתתי סדרות יהיה חלקי יותר בקורס הזה.
*[[קובץ:Sin(x)_over_x.png|400px|link=https://he.wikipedia.org/wiki/%D7%94%D7%92%D7%91%D7%95%D7%9C_%D7%A9%D7%9C_sin(x)/x]]הרצאה 3 - הגדרת הגבול במובן הצר והרחב**עבור זוית <math>0<x<\frac{\pi}{2}</math> שטח המשולש חסום בשטח הגזרה (משולש פיצה עם הקשה) שחסום בשטח המשולש:**<math>S_{\triangle AOB}<S_{\bigcirc AOB}<S_{\triangle AOD}</math>**<math>\frac{sin(x)}{2}<\frac{x}{2}<\frac{tan(x)}{2}</math>***כיוון ש<math>0<sin(x)<x</math> בתחום <math>(0,\frac{\pi}{2})</math>, נובע לפי סנדוויץ' ש<math>\lim_{x\to 0^+}sin(x)=0</math>.***כיוון שמדובר בפונקציה אי זוגית, נובע שזה גם הרצאה 4 - תכונות של הגדרת הגבול משני הצדדים.ומבוא לחשבון גבולות***כעת בתחום <math>(-\frac{\pi}{2},\frac{\pi}{2})</math> הקוסינוס חיובית ולכן <math>cos(x)=\sqrt{1הרצאה 5 -sin^2(x)}</math> ונובע כי <math>\lim_{x\to 0}cos(x)=1</math>.כלים לחישוב גבולות**נחלק את אי השיוויון הטריגונומטרי בסינוס ונקבל:הרצאה 6 - חשבון גבולות מורחב**<math>1<\frac{x}{sin(x)}<\frac{1}{cos(x)}</math>**לפי כלל הסנדביץ <math>\lim_{x\to 0^+}\frac{sin(x)}{x}=1</math>**כיוון שמדובר בפונקציה זוגית, נובע שהגבול משני הצדדים שווה 1.הרצאה 7 - סדרות מונוטוניות והמספר e
==הרצאות 8-10 פונקציות==
פרק 4 ב[[חדוא 1 - ארז שיינר|קישור הבא]] (https://calc1.math-wiki.com)
*ראינו ש<math>\lim_{x\to 0}\frac{sin(x)}{x}=1</math>.הרצאה 8 - הגדרות הגבול של פונקציה לפי קושי ולפי היינה*שימו לב ש<math>\lim_{x\to\infty}\frac{sin(x)}{x}=0</math>, כיוון שמדובר בחסומה חלקי שואפת לאינסוף.הרצאה 9 - הפונקציות הטריגונומטריות*הרצאה 10 - רציפות
==הרצאה 10הרצאות 11-13 גזירות==*תתי סדרות וגבולות חלקיים פרק 5 ב[[חדוא 1 - ארז שיינר|קישור הבא]] (ללא הוכחה)**סדרה מתכנסת לגבול אם"ם הגבול החלקי העליון והתחתון שווים לוhttps://calc1.**אם ניתן לחלק סדרה לתתי סדרות שכולן מתכנסות לאותו גבול, אזי זה גבול הסדרה.*מסקנה: גבול של פונקציה קיים בנקודה אם"ם הגבולות החד צדדיים קיימים ושווים לוmath-wiki.com)
*הרצאה 11 - הגדרת הנגזרת ונגזרת של פונקציות אלמנטריות
*הרצאה 12 - נוסחאות הגזירה
*הרצאה 13 - נגזרת ההופכית
*גבול של הרכבת פונקציות נכשל ללא רציפות.
**<math>f(x)=\frac{x}{x}, g(x)=0</math> מתקיים כי <math>\lim_{x\to 0}f(x)=1,\lim_{x\to 2}g(x)=0</math> אבל <math>\lim_{x\to 2}f(g(x))\neq 1</math>.
*רציפות.
*טענה: אם f רציפה ב<math>x_0</math> אזי לכל סדרה <math>x_n\to x_0</math> (גם אם אינה שונה מ<math>x_0</math>) מתקיים כי <math>f(x_n)\to f(x_0)</math>.
*הרכבת רציפות: תהי f רציפה ב<math>x_0</math> ותהי g רציפה ב<math>f(x_0)</math>. אזי <math>g\circ f</math> רציפה ב<math>x_0</math>.
**הוכחה:
**תהי סדרה <math>x_0\neq x_n\to x_0</math> אזי <math>f(x_n)\to f(x_0)</math>
**לפי הטענה הקודמת, <math>g(f(x_n))\to g(f(x_0))</math>.
==הרצאות 14-17 חקירה==
פרק 6 ב[[חדוא 1 - ארז שיינר|קישור הבא]] (https://calc1.math-wiki.com)
*מיון אי רציפות.**רציפות הרצאה 14 - הגבול בנקודה שווה לערך בנקודה.משפט ערך הביניים**סליקה הרצאה 15 - הגבול קיים וסופי בנקודהויירשטראס, אך שונה מהערך בנקודה או שהפונקציה אינה מוגדרת בנקודה.פרמה, רול, לגראנז', קושי**קפיצתית (מין ראשון) הרצאה 16 - הגבולות החד צדדיים קיימים סופיים ושונים בנקודה.הוכחת משפט קושי, קשר בין הנגזרת למונוטוניות**עיקרית (מין שני) הרצאה 17 - אחד הגבולות החד צדדיים אינו קיים או שאינו סופי.כלל לופיטל
==הרצאה 1118 פולינום טיילור=====הגדרת הנגזרת===*<math>f'(x)=\lim_{h\to 0}\frac{f(x+h)פרק 6 ב[[88-f(x)}{h}<133 חשבון אינפיניטיסימלי 2/שיינר/math>*<math>\lim{h\to 0} \frac{fתקציר הרצאות|קישור הבא]] (x_0+h)-f(x_0)}{h} =\{h=x-x_0\} = \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}</math>**הסבר לגבי שיטת ההצבה בה השתמשנו לעילhttps:**נניח כי <math>\lim{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}=f'(x_0)</math> ונוכיח כי <math>\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)</math>, והוכחה דומה בכיוון ההפוךcalc2.**תהי <math>x_0\neq x_n\to x_0</math> נגדיר את הסדרה <math>0\neq h_n=x_n-x_0\to 0</math>wiki.**כיוון ש<math>\frac{f(x_0+h_ncom)-f(x_0)}{h_n}\to f'(x_0)</math> נובע כי <math>\frac{f(x_n)-f(x_0)}{x_n-x_0}\to f'(x_0)</math>.*אם f גזירה בנקודה, היא רציפה בנקודה:**צ"ל <math>\lim_{x\to x_0}f(x)=f(x_0)</math>**לפי אריתמטיקה של גבולות זה שקול ל <math>\lim_{x\to x_0}f(x)-f(x_0)=0</math>**לפי עקרון win (קיצור של wouldn't it be nice?) מתקיים כי <math>\lim_{x\to x_0}f(x)-f(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\cdot (x-x_0)=f'(x_0)\cdot 0 = 0</math>*פונקציה הערך המוחלט אינה גזירה באפס**<math>(|x|)'(0) = \lim_{h\to 0}\frac{|h|-|0|}{h}=\lim\frac{|h|}{h}</math> וגבול זה אינו קיים, כיוון שהגבולות החד צדדים שונים.**ניתן לשים לב גם ש<math>|x|=\sqrt{x^2}</math>, וכמו כן נראה בהמשך כי<math>\sqrt{x}</math> אינה גזירה באפס.
===הנגזרות של הפונקציות האלמנטריות===*טריגו:**<math>\lim_{h\to 0}\frac{1-cos(h)}{h}=\lim_{h\to 0}\frac{sin^2(h)}{h(1+cos(h))}=\lim_{h\to 0}sin(h)\cdot \frac{sin(h)}{h}\cdot \frac{1}{1+cos(h)}=0\cdot 1 \cdot \frac{1}{2}=0</math>**<math>(sin(x))'=\lim_{h\to 0}\frac{sin(x+h)-sin(x)}{h}=\lim_{h\to 0}\frac{sin(x)cos(h)+sin(h)cos(x)-sin(x)}{h}=\lim_{h\to 0}sin(x)\cdot \frac{cos(h)-1}{h} + cos(x)\cdot \frac{sin(h)}{h}=cos(x)</math>**באופן דומה <math>(cos(x))'=-sin(x)</math>*לוג:**<math>\lim_{h\to 0}\frac{log(1+h)}{h}=\lim_{h\to 0}\frac{1}{h}\cdot log(1+h)=\lim_{h\to 0}log\left(\left(1+h\right)^{\frac{1}{h}}\right)=log(e)</math>***המעבר האחרון נובע מהעובדה שפונקצית הלוג רציפה.***(בפרט נובע כי <math>\lim_{x\to 0}\frac{ln(1+x)}{x}=1</math>.)**<math>(log(x))'=\lim_{h\to 0}\frac{log(x+h)-log(x)}{h}= \lim_{h\to 0}\frac{log\left(\frac{x+h}{x}\right)}{h}=\lim_{h\to 0}\frac{1}{x}\cdot\frac{log\left(1+\frac{h}{x}\right)}{\frac{h}{x}}=\frac{log(e)}{x}</math>***בפרט נובע כי <math>(ln(x))' = \frac{1}{x}</math>*אקספוננט:**<math>\lim_{h\to 0}\frac{a^h-1}{h} = \{t=a^h-1, h=log_a(1+t)\} = \lim_{t\to 0} \frac{t}{log_a(1+t)} = \frac{1}{log_a(e)} = \frac{1}{\frac{ln(e)}{ln(a)}}=ln(a)</math>**<math>(a^x)' = \lim_{h\to 0}\frac{a^{x+h}-a^x}{h}= \lim_{h\to 0}a^x\cdot \frac{a^h-1}{h}=a^x\cdot ln(a)</math>***בפרט נובע כי <math>(e^x)'=e^x</math>.*חזקה:**<math>(x^\alpha)'=\alpha x^{\alpha-1}</math> לכל <math>\alpha\in \mathbb{R}</math>, הוכחה בהמשך.***בפרט: ***<math>(1)'=0</math>***<math>(\frac{1}{x})' = (x^{-1})'=-\frac{1}{x^2}</math>***<math>(\sqrt{x})'=(x^{\frac{1}{2}})פולינום טיילור ושארית לגראנז'=\frac{1}{2\sqrt{x}}</math>בלבד
==הרצאה 1219 הקדמה לאינטגרלים=====נגזרת של מכפלה בקבוע, סכום ומכפלת פונקציות===תהיינה <math>f,g</math> גזירות בנקודה x.*<math>(cf)'(x) = \lim_{h\to 0}\frac{cf(x+h)פרק 3 ב[[88-cf(x)}{h}= cf'(x)<133 חשבון אינפיניטיסימלי 2/math>*<math>(f+g)'(x)= \lim_{h\to 0}\frac{f(x+h)+g(x+h)-f(x)-g(x)}{h}=f'(x)+g'(x)<שיינר/math>*<math>תקציר הרצאות|קישור הבא]] (f\cdot g)'(x) = \lim_{h\to 0}\frac{f(x+h)g(x+h)- f(x)g(x)}{h} = \lim_{h\to 0}\frac{f(x+h)g(x+h)-f(x)g(x+h)+f(x)g(x+h)-f(x)g(x)}{h} =</math>https:<math>=\lim_{h\to 0}g(x+h)\cdot\frac{f(x+h)-f(x)}{h}+ f(x)\cdot\frac{g(x+h)-g(x)}{h}=g(x)f'(x)+f(x)g'(x) </math>*שימו לב ש<math>g(x+h)\to g(x)</calc2.math> כיוון שg רציפה בx, כיוון שהיא גזירה בx-wiki.com)
*אינטגרל מסוים ולא מסויים, המשפט היסודי של החדו"א
===נגזרת של הרכבה=הרצאות 20-21 שיטות אינטגרציה==תהי f גזירה פרק 1 ב<math>x_0</math> ותהי g הגזירה ב<math>f(x_0)</math>:*<math>(g\circ f)'(x_0) = \lim_{x\to x_0} \frac{g(f(x))-g(f(x_0))}{x[[88-x_0}<133 חשבון אינפיניטיסימלי 2/math>*תהי סדרה <math>x_0\neq x_n\to x_0<שיינר/math>.*רוצים לומר ש<math>\frac{gתקציר הרצאות|קישור הבא]] (f(x_n))-g(f(x_0))}{x_n-x_0}= \frac{g(f(x_n))-g(f(x_0))}{f(x_n)-f(x_0)}\cdot \frac{f(x_n)-f(x_0)}{x_n-x_0}\to g'(f(x_0))\cdot f'(x_0)<https:/math>.*אמנם <math>f(x_n)\to f(x_0)</math> בגלל שהרציפות נובעת מהגזירות, אבל לא ידוע ש<math>f(x_n)\neq f(x_0)</math> ובמקרה זה אנחנו כופלים ומחלקים באפסcalc2.*אם יש תת סדרה <math>a_n</math> של <math>x_n</math> עבורה <math>f(a_n)=f(x_0)</math> אזי <math>\frac{f(a_n)-f(x_0)}{a_n-x_0}=0</math> ולכן <math>f'(x_0)=0</math>wiki.*לכן <math>g'(f(x_0com))\cdot f'(x_0)=0</math>.*כמו כן, <math>\frac{g(f(a_n))-g(f(x_0))}{a_n-x_0}=0</math>.*לכן בכל מקרה קיבלנו כי <math>\frac{g(f(x_n))-g(f(x_0))}{x_n-x_0}\to g'(f(x_0))\cdot f'(x_0)</math>*סה"כ <math>(g\circ f)'(x_0)=g'(f(x_0))\cdot f'(x_0)</math>.
==הרצאה 22 סכומי רימן==
פרק 2 ב[[88-133 חשבון אינפיניטיסימלי 2/שיינר/תקציר הרצאות|קישור הבא]] (https://calc2.math-wiki.com)
===נגזרת של חזקה===*עבור <math>x>0</math> מתקיים <math>(x^\alpha)'=(e^{ln\left(x^\alpha\right)})' = (e^{\alpha\cdot ln(x)})' = e^{\alpha\cdot ln(x)}\cdot \frac{\alpha}{x} = x^\alpha \cdot \frac{\alpha}{x} = \alpha x^{\alpha-1}</math>פונקציה רציפה סכומי הרימן מתכנסים לאינטגרל המסויים*דוגמא: חישוב הנגזרת של <math>x^x</math>אורך עקומה, נפח גוף סיבוב
===נגזרת מנה=הרצאות 23-24 אינטגרל לא אמיתי==תהיינה f,g גזירות בנקודה x כך ש <math>g'(x)\neq 0</math>:*נזכור כי <math>(\frac{1}{x})'=פרק 4 ב[[88-\frac{1}{x^133 חשבון אינפיניטיסימלי 2}</math>*אזי בנקודה x מתקייםשיינר/תקציר הרצאות|קישור הבא]] (https: <//calc2.math>\left(\frac{f}{g}\right-wiki.com)'=\left(f\cdot \frac{1}{g}\right)' = f'\cdot \frac{1}{g} + f\cdot \frac{-g'}{g^2} = \frac{f'g-g'f}{g^2}</math>
==הרצאה 13==*פונקציה הופכית, נגזרת של פונקציה הופכית.==הרצאה 14==*משפט ערך הביניים.*תתי סדרות, גבול חלקי עליון ותחתון (כנראה ללא הוכחה).*משפטי ויירשטראס.==הרצאה 15==*משפט פרמה.*משפט רול.*משפט לגראנז'.*משפט לגראנז' המוכלל.==הרצאה 16==*כלל לופיטל (הוכחה לחלק מהמקרים).*כיצד להעזר בלופיטל בכל אחד מהמקרים הבעייתיים.==הרצאה 17==*פולינום טיילור.*שארית לגראנז' בפולינום טיילור.==הרצאה 18==*אינטגרל - מסויים ולא מסוים.*הצגת נוסחאת ניוטון לייבניץ - הוכחה עם הערך הממוצע האינטגרלי.==הרצאה 19==*אינטגרציה בחלקים.*שיטת ההצבה.==הרצאה 20==*אינטגרל על פונקציה רציונאלית.==הרצאה 21==*סכומי רימן.*אורך עקומה, נפח גוף סיבוב.==הרצאה 22==*אינטגרלים הגדרה ומבחני השוואה לאינטגרלים לא אמיתיים.*מבחני התכנסות.