הבדלים בין גרסאות בדף "88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/11"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(תכונות של הדטרמיננטה)
(תרגיל)
שורה 67: שורה 67:
 
תהי <math>B\in F^{3\times 3}</math> עם דטרמיננטה <math>|B|=-1</math>. מצא את <math>|2B|</math>.
 
תהי <math>B\in F^{3\times 3}</math> עם דטרמיננטה <math>|B|=-1</math>. מצא את <math>|2B|</math>.
  
'''פתרון'''
+
'''פתרון'''
  
 
<math>|2B|=|2I\cdot B|=|\pmatrix{2&0&0\\ 0&2&0\\ 0&0&2}|\cdot |B|=2^3 \cdot (-1)</math>
 
<math>|2B|=|2I\cdot B|=|\pmatrix{2&0&0\\ 0&2&0\\ 0&0&2}|\cdot |B|=2^3 \cdot (-1)</math>
  
 
'''בהכללה:''' <math>|\alpha A|=\alpha^n |A|</math>.
 
'''בהכללה:''' <math>|\alpha A|=\alpha^n |A|</math>.

גרסה מ־07:18, 3 באוגוסט 2016

חזרה למערכי התרגול

דטרמיננטות

הגדרה הדטרמיננטה של מטריצה ריבועית A\in F^{n\times n} היא סקלר det(A)=|A|\in F המחושב מסכומים של מכפלות של אברי המטריצה.

חישוב דטרמיננטה של מטריצות קטנות

  • הדטרמיננטה של מטריצה מסדר 1 A=(\alpha)\in F^{1\times 1} היא הערך היחיד במטריצה det(A)=\alpha.
  • הדטרמיננטה של מטריצה עיבוד הנוסחה נכשל (פונקציה \pmatrix לא מוכרת): A=\pmatrix{a&b\\ c&d} \in F^{2\times 2}
היא det(A)=ad-bc.

למשל: עיבוד הנוסחה נכשל (פונקציה \pmatrix לא מוכרת): det\pmatrix{1&2\\ 3&4} = 1\cdot 4-2\cdot 3=-2 .

חישוב לפי נוסחת לפלס (מינורים)

סימון עבור מטריצה A\in F^{n\times n} נסמן ב M_{ij} את המטריצה מגודל n-1 \times n-1 המתקבלת מA ע"י מחיקת השורה הi והעמודה הj. זה נקרא המינור הij של המטריצה.

דוגמא: עבור עיבוד הנוסחה נכשל (פונקציה \pmatrix לא מוכרת): A=\pmatrix{1&2&3\\ 4&5&6\\ 7&8&9}

למשל 

עיבוד הנוסחה נכשל (פונקציה \pmatrix לא מוכרת): M_{12}=\pmatrix{4&6\\ 7&9}

עיבוד הנוסחה נכשל (פונקציה \pmatrix לא מוכרת): M_{23}=\pmatrix{1&2\\ 7&8}


אפשר למצוא את הדטרמיננטה בעזרת הדטרמיננטות של המינורים (לפי שורה או לפי עמודה), וכך באינדוקציה למצוא דטורמיננטה של כל מטריצה.

מציאת הדטרמיננטה ע"י מינורים עם פיתוח לפי השורה הi:

|A|=\sum_{j=1}^n (-1)^{i+j}a_{ij}|M_{ij}|

מציאת הדטרמיננטה ע"י מינורים עם פיתוח לפי העמודה הj:

|A|=\sum_{i=1}^n (-1)^{i+j}a_{ij}|M_{ij}|

לדוגמא: עיבוד הנוסחה נכשל (פונקציה \pmatrix לא מוכרת): A=\pmatrix{1&2&3\\ 4&5&6\\ 7&8&9}

נפתח לפי השורה הראשונה:

|A|=(-1)^{1+1}\cdot 1\cdot \begin{vmatrix}5&6\\ 8&9 \end{vmatrix}+(-1)^{1+2}\cdot 2\cdot \begin{vmatrix} 4&6\\ 7&9 \end{vmatrix}+(-1)^{1+3}\cdot 3 \cdot \begin{vmatrix} 4&5\\ 7&8 \end{vmatrix}=0

נפתח גם לפי העמודה השנייה: |A|=(-1)^{1+2}\cdot 2\cdot \begin{vmatrix}4&6\\ 7&9 \end{vmatrix}+(-1)^{2+2}\cdot 5\cdot \begin{vmatrix} 1&3\\ 7&9 \end{vmatrix}+(-1)^{2+3}\cdot 8 \cdot \begin{vmatrix} 1&3\\ 4&6 \end{vmatrix}=0

תכונות של הדטרמיננטה

1. כפליות |AB|=|A||B|.

2. בפרט |A^k|=|A|^k.

3. |A^t|=|A|.

4. אם המטריצה משולשית אז הדטרמיננטה= מכפלת אברי האלכסון (להדגים?).

5. אם A הפיכה אז |A^{-1}|=|A|^{-1}.

6. A הפיכה אם"ם |A|\neq 0.


למשל המטריצה עיבוד הנוסחה נכשל (פונקציה \pmatrix לא מוכרת): A=\pmatrix{1&2&3\\ 4&5&6\\ 7&8&9}

איננה הפיכה כי חישבנו שהדטרמיננטה היא אפס.

שימו לב שאין בהכרח קשר בין |A+B| לבין |A|+|B|. (דוגמא?)

תרגיל

נתונות מטריצות A,B\in F^{n \times n} כך ש |A|=2, |B|=-1. חשבו את |(AB^{-1})^t(BA)^{-2}|.

פתרון

|(AB^{-1})^t(BA)^{-2}|=|(AB^{-1})^t|\cdot |(BA)^{-2}|=|(AB^{-1})|\cdot |(BA)|^{-2}|=|A||B|^{-1}|B|^{-2}|A|^{-2}=-\frac{1}{2}

תרגיל

תהי B\in F^{3\times 3} עם דטרמיננטה |B|=-1. מצא את |2B|.

פתרון

עיבוד הנוסחה נכשל (פונקציה \pmatrix לא מוכרת): |2B|=|2I\cdot B|=|\pmatrix{2&0&0\\ 0&2&0\\ 0&0&2}|\cdot |B|=2^3 \cdot (-1)


בהכללה: |\alpha A|=\alpha^n |A|.