שינויים

קפיצה אל: ניווט, חיפוש

88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/11

נוספו 5,230 בתים, 18:01, 15 באוגוסט 2020
/* תרגיל */
* הדטרמיננטה של מטריצה מסדר 1 <math>A=(\alpha)\in F^{1\times 1}</math> היא הערך היחיד במטריצה <math>det(A)=\alpha</math>.
*הדטרמיננטה של מטריצה <math>A=\pmatrix{a&b\\ c&d} \in F^{2\times 2}</math> היא <math>det(A)=ad-bc</math>.
למשל: <math>det\pmatrix{1&2\\ 3&4} = 1\cdot 4-2\cdot 3=-2 </math>.
3. <math>|A^t|=|A|</math>.
4. אם המטריצה משולשית אז הדטרמיננטה= מכפלת אברי האלכסון (להדגים?).~כן בבקשה~
5. אם <math>A</math> הפיכה אז <math>|A^{-1}|=|A|^{-1}</math>.
1. נעביר אגפים ונקבל <math>A^4=-2A</math>, נקח דטרמיננטה <math>|A|^4 =(-2)^n|A|</math> ולכן <math>|A|=(-2)^{\frac{n}{3}}</math>.
2. נעביר אגפים ונסדר <math>A \left( A^{n-1}+a_{n-1}A^{n-2}+\dots +a_2A+a_1I \right) =-I</math>, ומכפלת הפיכות היא הפיכה. (ומי שרוצה להפוך לתרגיל על דטרמיננטות - נקח דטרמיננטה <math>|A||something|=|-I|=(-1)^n</math>. בפרט, <math>|A|\neq 0</math>ולכן <math>A</math>הפיכה).
3. נעביר אגפים <math>AB=-BA</math> ונקח דטרמיננטה <math>|A||B|=(-1)^n|B||A|</math>. נתון ש<math>n</math> אי-זוגי ולכן <math>|A||B|=-|A||B|</math>.
זה מכריח ש<math>|A||B|=0</math> ולכן או ש <math>|A|=0</math>ואז <math>A</math>לא הפיכה, או ש<math>|B|=0</math> ואז <math>B</math>לא הפיכה.
 
===תרגיל===
פתרון
ראשית נסכום את כל השורות לשורה הראשונה ונקבל <math>|A|== \begin{vmatrix}a+n-1&a+n-1& \dots &a+n-1\\ 1&a&\dots &1\\1&1&\dots &1\\ \vdots &\vdots & \dots & \vdots \\ 1&1& \dots & a \end{vmatrix}</math>
נחלק את השורה הראשונה ב<math>a+n-1</math> ונקבל:
<math>|A|=(a+n-1)\begin{vmatrix}1&1&\dots &1\\1&a&\dots &1\\1&1&\ddots&1\\ \vdots &\vdots &{}& \vdots\\ 1&1&\dots & a\end{vmatrix}</math>
<math>|A|=(a+n-1)\begin{vmatrix}1&1&\dots &1\\0&a-1&\dots &0\\0&0&\ddots &0\\0&0&\dots &a-1\end{vmatrix}=(a+n-1)1(a-1)^{n-1}</math>
 
===תרגיל===
יהא <math>V</math> מ"ו ויהיו <math>v_{1},v_{2},\dots,v_{n}</math> וקטורים. הוכיחו/הפריכו: אם <math>v_{1},\dots,v_{n}</math> בת"ל אזי הוקטורים <math>v_{1}+v_{2},v_{2}+v_{3},v_{3}+v_{4},\dots,v_{n-1}+v_{n},v_{n}+v_{1}</math> בת"ל.
 
=== תרגיל ===
הוכיחו שלכל מטריצה <math>A\in\R^{n\times n}</math> שכל כניסה שווה ל <math>\pm 1</math> מתקיים כי <math>2^{n-1}|\det A</math>
 
פתרון: פתרון לתרגיל נמצא בדפים ישנים - כך נכתב שם:
<math>
\left|\left(\begin{array}{ccccc}
\pm1 & \pm1 & \pm1 & \cdots & \pm1\\
\pm1 & \pm1 & \pm1 & \cdots & \pm1\\
\pm1 & \pm1 & \pm1 & \cdots & \pm1\\
\vdots & \vdots & & \vdots\\
\pm1 & \pm1 & \pm1 & \cdots & \pm1
\end{array}\right)\right|=\left|\left(\begin{array}{ccccc}
\pm1 & \pm1 & \pm1 & \cdots & \pm1\\
0 & \pm2,0 & \pm2,0 & \cdots & \pm2,0\\
0 & \pm2,0 & \pm2,0 & \cdots & \pm2,0\\
\vdots & \vdots & & \vdots\\
0 & \pm2,0 & \pm2,0 & \cdots & \pm2,0
\end{array}\right)\right|=
</math>
 
<math>\left|\left(\begin{array}{ccccc}
\pm1 & \pm1 & \pm1 & \cdots & \pm1\\
0 & \pm2,0 & \pm2,0 & \cdots & \pm2,0\\
0 & 0 & \pm4,0 & \cdots & \pm4,0\\
\vdots & \vdots & & \vdots\\
0 & 0 & \pm4,0 & \cdots & \pm4,0
\end{array}\right)\right|=\cdots=\left|\left(\begin{array}{ccccc}
\pm1 & \pm1 & \pm1 & \cdots & \pm1\\
0 & \pm2,0 & \pm2,0 & \cdots & \pm2,0\\
0 & 0 & \pm4,0 & \cdots & \pm4,0\\
\vdots & \vdots & & \vdots\\
0 & 0 & 0 & \cdots & \pm2^{n-1},0
\end{array}\right)\right|</math>
 
 
מה דעתכם על הפתרון? האם יש פתרון נוסף? האם ניתן לחזק את הטענה ל <math>2^{n}|\det A</math>?
===תרגיל===
'''הערה''' מכיוון ו<math>|A|=|A^t|</math> מותר בחישוב הדטרמיננטה לעשות גם פעולות ''עמודה'' אלמנטריות, השינוי בדטרמיננטה הוא דומה.
===תרגיל==נתון ש<math>\begin{vmatrix}a&b&ac\\d&e&f\\g&h&i\end{vmatrix}=2</math>. חשבו את <math>\begin{vmatrix} i-4c&f&2i+f\\g-4a&d&2g+d\\h-4b&e&2h+e \end{vmatrix}</math>.
'''פתרון:'''
<math>|A|=^{C_3-C_2} \begin{vmatrix}i-4c&f&2i\\g-4a&d&2g\\h-4b&e&2h\end{vmatrix}=^{\frac{1}{2}C_3}2\begin{vmatrix}i-4c&f&i\\g-4a&d&g\\h-4b&e&h\end{vmatrix}=^{C_1-C_2}2\begin{vmatrix}-4c&f&i\\-4a&d&g\\-4b&e&h\end{vmatrix}=^{\frac{1}{-4}C_1}2(-4)\begin{vmatrix}c&f&i\\a&d&g\\b&e&h\end{vmatrix}=\dots =-16</math>
 
==== תרגיל מטריצת ונדרמונד====
הגדרה: יהיו <math>a_1,\dots a_n\in \mathbb{F}</math> סקלארים. מטריצת ונדרמונד <math>V=V(a_1,\dots,a_n)\in \mathbb{F}^{n\times n}</math> מוגדרת להיות
<math>V=\begin{vmatrix} 1&a_1&a_{1}^{2}& \cdots& a_{1}^{n-1}\\
1&a_2&a_{2}^{2}& \cdots& a_{2}^{n-1}\\
\vdots & & & & \\
1&a_n&a_{n}^{2}& \cdots& a_{n}^{n-1}
\end{vmatrix}</math>
 
הוכיחו כי <math>|V(a_1,\dots ,a_n)|=\prod_{1\leq i<j\leq n}(a_j-a_i)</math>
 
פתרון:
באינדקוציה על <math>n</math>. בסיס: מוזמנים לבדוק עבור <math>n=2</math>
 
צעד:
 
נבצע
* <math>C_n\leftarrow C_n-a_1C_{n-1}</math>
* <math>C_{n-1}\leftarrow C_{n-1}-a_1C_{n-2}</math>
וכו' עד
* <math>C_{2}\leftarrow C_2-a_1C_{1}</math>
 
לאחר מכן נוכל
*להוציא גורם משותף <math>a_2-a_1</math> מהשורה השניה
*להוציא גורם משותף <math>a_3-a_1</math> מהשורה השלישית
וכו עד
*להוציא גורם משותף <math>a_n-a_1</math> מהשורה האחרונה
 
נמשיך לפתח לפי שורה ראשונה ונקבל כי
<math>|V(a_1,\dots,a_n)|=\prod_{j=2}^n(a_j-a_1)\cdot |V(a_2,\dots ,a_n)|=</math>
לפי הנחת האינדוקציה, נוכל להמשיך
 
<math>=\prod_{j=2}^n(a_j-a_1)\cdot \prod_{2\leq i<j\leq n}^n(a_j-a_i)=\prod_{1\leq i<j\leq n}^n(a_j-a_i)</math>
 
מסקנה: מטריצת ונדרמונט הפיכה אמ"מ <math>a_1,\dots ,a_n</math> שונים זה מזה.
=המטריצה הנילוות (המצורפת)=
'''הגדרה''' תהי <math>A\in F^{n\times n}</math>, המטריצה נילווית שלה היא המטריצה <math>adj(A)_{i,j}=\left( (-1)^{i+j}|M_{ji}| \right)_{ij}</math>.
(שימו לב להחלפה בין <math>i</math> ו<math>j</math>!)
דוגמא?
===המשפט המרכזי===
<math>A(adjA)=(adjA)A=|A|I</math>
===תרגיל===
תהי <math>A\in F^{n\times n}</math> מטריצה.
 
1. הוכח כי <math>|adjA|=|A|^{n-1}</math>.
 
2. נניח כי המטריצה הפיכה, חשבו את <math>adj \left( adjA \right)</math>.
 
3. מצאו את <math>adj \left( adjA \right)</math> גם במקרה שהמטריצה אינה הפיכה.
פתרון
2. נשתמש במשפט עבור המטריצה <math>B=adjA</math>, אזי <math>(adjA)\cdot (adj(adjA)=|adjA|I</math>. ולפי הסעיף הקודם נקבל ש<math>adj(adjA)=adjA^{-1}|A|^{n-1}</math>. ומכיוון ו<math>adjA^{-1}=\frac{A}{|A|}</math> אז <math>adj(adjA)=A|A|^{n-2}</math>.
 
3. רמז: לתשובה של סעיף זה ולסעיף הקודם יש קשר הדוק.
===תרגיל===
א. נפתח ונקבל <math>(A+I)^2 =A^2+AI+IA+I^2=A^2+2A+I</math> נעביר אגפים ונקבל <math>A(-1)(A+2I)=I</math> ולכן <math>A</math>הפיכה.
ב.לפי המשפט <math>adjA=\frac{|A| A^{-1}{|A|}</math> ולכן בעצם נשאר למצוא ביטוי ל<math>A^{-1}</math>.לפי הסעיף הקודם <math>A^{-1}=-A-2I</math> ולכן <math>adjA=(-A-2I)|A|^{-</math>.===תרגיל===יהיו A,B ריבועיות (מגודל <math>n\times n</math>ׂ. הוכיחו כי <math>adj(AB)=adj(B)adj(A)</math> פתרון: מקרה 1: גם A וגם B הפיכות: מקרה פשוט - מוזמנים להוכיח בעזרת המשפט <math>A\cdot adj(A)=det(A)\cdot I</math> מקרה 2: A או B מדרגה קטנה שווה ל <math>n-2</math>: גם מקרה פשוט לאור העובדה שעבור מטריצה A שדרגתה קטנה שווה ל <math>n-2</math> מתקיים כי <math>adj(A)=0</math> ובנוסף <math>rank(AB)\leq rank(A),rank(B)</math> מקרה 3 - אחרת: יהיו i,j נתונים. השתכנעו כי ניתן להגדיר מטריצה <math>A'</math> כך שהיא זהה ל A פרט אולי לשורה i ומטריצה <math>B'</math> שזהה למטריצה B פרט אולי לעמודה j המקיימות כי: או ש <math>A'</math> וגם <math>B'</math> הפיכות או ש <math>A'</math> או<math>B'</math> מדרגה קטנה שווה ל <math>n-2</math>. בכל מקרה לפי מקרה1 ומקרה 2 נסיק כי <math>adj(A'B')=adj(B')adj(A')</math>. סיום ההוכחה נובע מכך ש:*<math>M_{i,j}(A'B')=M_{i,j}(AB)</math>*<math>R_{j}(adj(B'))C_i(adj(A'))=R_{j}(adj(B))C_i(adj(A))</math>ולכן המיקום <math>j,i</math>שווה בשני האגפים.
===תרגיל===
<math>adjA\in \mathbb{Q}^{n\times n}</math> כי האיברים הם <math>(-1)^{i+j}|M_{ji}|</math> שהם גם רציונלים (כמו קודם).
סה"כ קיבלנו <math>A^{-1}\in \mathbb{Q}^{n\times n}</math>.
 
'''פתרון בלי לערב adj סתם:''' נתון ש- <math>|A|\neq 0</math> וכיון ש- <math>|A|\in \mathbb{Q}</math> (דטרמיננטה מתקבלת ממכפלות של איברי המטריצה (עד כדי מינוס אחד) שהינם רציונאליים) אז היא הפיכה גם מעל הרציונאליים.
==דטרמיננטות של העתקות לינאריות==
'''טענה שימושית''' העתקה <math>T\colon V\rightarrow V</math>היא הפיכה אם"ם הדטרמיננטה שלה שונה מאפס.
'''עוד טענה שימושית''' תהיינה <math>T,S \colon V \rightarrow V</math> הע"ל. אזי <math>|T\circ S|=|T||S|</math>.
2,232
עריכות