שינויים

קפיצה אל: ניווט, חיפוש
/* פתרון */
#<math>span(W)=W</math> (רק אם <math>W</math> ת"מ!)
#מסקנה: אם <math>A\subseteq span(B)</math> אז <math>span(A)\subseteq span(B)</math> (הוכחה: <math>span(A)\subseteq span(span(B))=span(B)</math>)
 
==== תרגיל ====
יהא <math>V</math> מ"ו ויהיו <math>S_{1},S_{2}</math> תתי קבוצות. הוכיחו/הפירכו:
# <math>\sp S_{1}\triangle\sp S_{2}\supseteq\sp\left(S_{1}\triangle S_{2}\right)</math>
# <math>\sp S_{1}\triangle\sp S_{2}\subseteq\sp\left(S_{1}\triangle S_{2}\right)</math>
===תרגילים===
יש שני משתנים תלויים- x,y ושני משתנים חופשיים- z,w. נסמן z=t, w=s ונקבל פתרון כללי מהצורה <math>\big(\frac{t-s}{2},\frac{t+s}{2},t,s\big)</math>
 
====תרגיל ====
תרגיל: במרחב <math>V=\mathbb{R}_{2}[x]</math> נגדיר <math>p_{1}(x)=2+6x-5x^{2},p_{2}(x)=1+2x-3x^{2},p_{3}(x)=1-2x-5x^{2}</math> האם <math>p_{1}(x),p_{2}(x),p_{3}(x)</math> בת"ל? אם לא, מצאו צי"ל לא טריוואלי שמתאפס.
 
====תרגיל ====
תרגיל: יהא <math>V</math> מ"ו ויהיו <math>v_{1},v_{2},v_{3}</math> וקטורים. הוכיחו/הפריכו: אם <math>v_{1},v_{2},v_{3}</math> בת"ל בזוגות (כלומר כל זוג וקטורים שונים בת"ל) אזי
<math>\left\{ v_{1},v_{2},v_{3}\right\}</math> בת"ל.
 
====תרגיל ====
תרגיל: יהא V מ"ו ויהיו <math>v_{1},\dots,v_{n}</math> וקטורים. אם <math>v_{1},\dots,v_{n}</math> בת"ל אזי הוקטורים <math>v_{1},v_{2}+v_{1},\dots,v_{n}+v_{1}</math> גם בת"ל.
 
====תרגיל ====
יהא <math>V=\mathbb{F}^{n}ֱ</math> מ"ו ו <math>A\in\mathbb{F}^{n\times n}</math> מטריצה ריבועית. הוכיחו: (<math>A</math> הפיכה) אמ"מ (לכל <math>v_{1},\dots,v_{m}</math> בת"ל מתקיים כי <math>Av_{1},\dots,Av_{m}</math> בת"ל.)
 
====תרגיל ====
תרגיל: יהא <math>V=\mathbb{F}^{n\times n}</math> ותהא <math>A\in V</math> הפיכה. הוכיחו/הפריכו: <math>A,A^{2}</math> בת"ל.
==תלות לינארית==
דיברנו על כך שצירופים לינאריים הינם כל הסכומים (כולל כפל בסקלרים) של הוקטורים הנתונים. אם נסתכל על פרישה באופן גיאומטרי, אנו רואים שעל ידי וקטורים נפרשים: קו ישר, מישור, מרחב או משהו 4 מימדי ומעלה. כעת, אנו רוצים לראות אילו מהוקטורים "מיותר" כלומר, אם אנחנו יודעים ש10 וקטורים פורשים מישור מסויים, כמה וקטורים מהם אפשר להסיר ועדיין לקבל את אותו המישור? במקרה וניתן להסיר וקטור כלשהו, קבוצה הוקטורים תקרא '''תלויה לינארית'''.
 
באופן פורמאלי:
הגדרות:
יהא <math>V</math> מ"ו מעל <math>\mathbb{F}</math>. יהיו וקטורים <math>v_1,...,v_n\in V</math> כלשהם אזי
# ה'''צ"ל הטריוואלי''' הוא צירוף לינארי שכל המקדמים שווים 0 (ואז גם הצירוף שלהם שווה 0). כלומר הצירוף לינארי <math>0v_{1}+0v_{2}+\cdots0v_{n}=0</math> .
# נאמר ש <math>v_1,...,v_n\in V</math> '''בילתי בלתי תלויים לינארית''' אם אם הצ"ל ה'''יחידי''' שמתאפס הוא הצ"ל הטרוויאלי. באופן שקול אם יש צ"ל שמתאפס אזי הוא הצ"ל הטרוויאלי. ובסימונים: <math>\alpha_{1}v_{1}+\alpha_{2}v_{2}+\cdots\alpha_{n}v_{n}=0 \Rightarrow \forall i \alpha_i = 0</math>
# <math>v_1,...,v_n\in V</math> יקראו '''תלויים לינארית''' אם הם לא בלתי תלויים לינארית. באופן שקול אם קיימים סקלרים <math>a_1,...,a_n\in\mathbb{F}</math> לא כולם אפס כך שמתקיים <math>a_1v_1+...+a_nv_n=0</math>
'''הערה:''' הקבוצה הריקה <math>\emptyset \subseteq V</math> מוגדרת כקבוצה בת"ל.
 
'''הערה/משפט''' תכונה שקולה לכך שקבוצת וקטורים היא תלויה לינארית ניתנת לניסוח באמצעות פרישה. קבוצה S היא ת"ל אמ"מ קיים לפחות וקטור אחד אשר הסרתו מהקבוצה לא פוגעת בspan (כלומר span הקבוצה איתו או בלעדיו שווה).
===דוגמאות ===
'''מסקנה:''' אם <math>v_1</math> הינו צירוף לינארי של האחרים ניתן להסיר אותו במובן הבא: <math>span\{v_1,...,v_n\}=span\{v_2,...,v_n\}</math>.
====תרגיל ====
תרגיל: במרחב <math>V=\mathbb{R}_{2}[x]</math> נגדיר <math>p_{1}(x)=2+6x-5x^{2},p_{2}(x)=1+2x-3x^{2},p_{3}(x)=1-2x-5x^{2}</math> האם <math>p_{1}(x),p_{2}(x),p_{3}(x)</math> בת"ל? אם לא, מצאו צי"ל לא טריוואלי שמתאפס.
 
====תרגיל ====
תרגיל: יהא <math>V</math> מ"ו ויהיו <math>v_{1},v_{2},v_{3}</math> וקטורים. הוכיחו/הפריכו: אם <math>v_{1},v_{2},v_{3}</math> בת"ל בזוגות (כלומר כל זוג וקטורים שונים בת"ל) אזי
<math>\left\{ v_{1},v_{2},v_{3}\right\}</math> בת"ל.
 
====תרגיל ====
תרגיל: יהא V מ"ו ויהיו <math>v_{1},\dots,v_{n}</math> וקטורים. אם <math>v_{1},\dots,v_{n}</math> בת"ל אזי הוקטורים <math>v_{1},v_{2}+v_{1},\dots,v_{n}+v_{1}</math> גם בת"ל.
 
====תרגיל ====
יהא <math>\mathbb{F}^n</math> מ"ו ו <math>A\in\mathbb{F}^{n\times n}</math> מטריצה ריבועית. הוכיחו: (<math>A</math> הפיכה)
אמ"מ (לכל <math>v_{1},\dots,v_{m}</math> בת"ל מתקיים כי <math>Av_{1},\dots,Av_{m}</math> בת"ל.)
 
====תרגיל ====
תרגיל: יהא <math>V=\mathbb{F}^{n\times n}</math> ותהא <math>A\in V</math> הפיכה. הוכיחו/הפריכו: <math>A,A^{2}</math> בת"ל.
===ושוב, בחזרה למערכות משוואות לינאריות===
לפי משפט השלישי חינם מספיק למצוא <math>p(x)\in W</math> ואז הוא יהווה בסיס. הנה דוגמא <math>p(x)=(x-1)(x-2)</math>.
ב. '''בסיס לסכום:''' ראשית נציג אותם כנפרשים, ע"י מציאת הפתרונות למשוואות בהגדרת תתי-המרחבים: <math>W_1=span\{-1+x^2,-1+x\},W_2=span\{-4+x^2,-2+x\}</math>. לכן נקבל: <math>W_1+A_2W_2=span\{-1+x^2,-1+x,-4+x^2,-2+x\}</math>, ואז נמצא את הבסיס ע"י למצוא מבין אלה וקטורים שהצ"ל נותן 0 אמ"ם הטריוויאלי, ונקבל ששלושת הראשונים עושים זאת. קיבלנו<math>\dim(W_1+W_2)=3=\dim(\mathbb{R}_2[x])</math>, ולכן <math>W_1+W_2=\mathbb{R}_2[x]</math>. === תרגיל ===תרגיל: במרחב <math>V=\mathbb{R}^{4}</math>, מצאו בסיס ל <math>W_{1},W_{2}</math> ולסכום ולחיתוך שלהם כאשר<math>W_{1}=span\left\{ \left(\begin{array}{c}2\\-1\\1\\0\end{array}\right),\left(\begin{array}{c}0\\1\\0\\1\end{array}\right)\right\}</math>  ו <math>W_{2}=\left\{ \left(\begin{array}{c}a_{1}\\a_{2}\\a_{3}\\a_{4}\end{array}\right)\mid\begin{array}{c}a_{1}-3a_{2}-5a_{3}=a_{4}\\4a_{2}+8a_{3}-2a_{4}=2a_{1}\end{array}\right\}</math>  === תרגיל ===.2 תרגיל: במרחב <math>V=\mathbb{R}_{3}[x]</math>, מצאו בסיס ל <math>W_{1},W_{2}</math> ולסכום ולחיתוך שלהם כאשר<math>W_{1}=span\left\{ 2-x+x^{2},x+x^{4}\right\}</math> ו <math>W_{2}=\left\{ a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}\mid\begin{array}{c}a_{0}-3a_{1}-5a_{2}=a_{3}\\4a_{1}+8a_{2}-2a_{3}=2a_{0}\end{array}\right\}</math> === תרגיל ===הוכיחו לכל מטריצה <math>A\in\mathbb{F}^{5\times5}</math> מתקיים שהמטריצות <math>\left\{ I,A,A^{2},\dots,A^{25}\right\}</math> ת"ל במרחב <math>V=\mathbb{F}^{n\times n}</math>. האם קיימת מטריצה <math>A\in\mathbb{F}^{5\times5}</math> כך ש <math>\left\{ I,A,\dots,A^{24}\right\}</math> בת"ל?? (שאלה קשה!) === תרגיל ===יהא <math>V</math> מ"ו. יהיו <math>W_{1}\subseteq W_{2}</math> תתי מרחבים. הוכיחו/הפירכו: כל בסיס של <math>W_{2}</math> ניתן לצמצום לבסיס של <math>W_{1}</math>.
===תרגיל 7.17===
עריכה אחד