שינויים

/* משפט המימדים */
יש שני משתנים תלויים- x,y ושני משתנים חופשיים- z,w. נסמן z=t, w=s ונקבל פתרון כללי מהצורה <math>\big(\frac{t-s}{2},\frac{t+s}{2},t,s\big)</math>
 
==משפט המימדים==
[[משפט המימדים]]:
 
יהי V מ"ו ויהיו U,W תתי מרחבים. אזי <math>dim(U+W)=dim(U)+dim(W)-dim(U\cap W)</math>
 
====סקיצה של ההוכחה - לא מפחיד כמו שנהוג לחשוב====
#ניקח בסיס לU חיתוך W. נסמן אותו ב<math>\{v_1,...,v_k\}</math>
#נשלים אותו לבסיס לU. נסמן <math>\{v_1,...,v_k,u_1,...,u_m\}</math>
#נשלים את הבסיס לחיתוך גם לבסיס לW. נסמן <math>\{v_1,...,v_k,w_1,...,w_p\}</math>
#'''נוכיח''' (וזה עיקר העבודה) שהקבוצה <math>\{v_1,...,v_k,u_1,...,u_m,w_1,...,w_p\}</math> הינה בסיס לU+W:
##נראה כי כל וקטור מהצורה u+w ניתן להצגה כצירוף לינארי של איברים אלה (זה ברור)
##נראה כי הקבוצה הזו בת"ל, אחרת וקטורים שהנחנו שאינם בחיתוך יהיו חייבים להיות בחיתוך בסתירה
#המשל נובע בקלות מספירת הוקטורים בבסיסים שכן <math>dim(U+W) = k+m+p=(k+m)+(k+p) -k</math>
 
===תרגיל 8.3===
יהא V מ"ו ממימד 5, ויהיו U ממימד 3 ו-W ממימד 4 תתי מרחבים של V. מהן האפשרויות עבור <math>dim(U\cap W)</math>? הוכח!
 
====פתרון====
ראשית, <math>U+W\subseteq V</math> ולכן <math>dim(U+W)\leq dim(V)=5</math>. אבל לפי משפט המימדים מתקיים <math>5\geq dim(U+W)=dim(U)+dim(W)-dim(U\cap W)=3+4-dim(U\cap W)</math>.
 
 
ביחד מקבלים ש <math>dim(U\cap W)\geq 2</math>. מצד שני, החיתוך מוכל גם בU וגם בW ולכן המימד שלו קטן שווה מהמימדים שלהם, ובפרט מהקטן מהם. לכן <math>dim(U\cap W)\leq 3</math>.
 
 
סה"כ האפשרויות למימד הן 2,3. קל למצוא דוגמאות המוכיחות שאפשרויות אלה אכן מתקבלות מתישהו.
 
===תרגיל 8.5===
יהא V מ"ו ממימד n, ויהיו U,W תתי מרחבים כך ש dimU=n-1 ו-W אינו מוכל בU. הוכח כי W+U=V
 
====הוכחה====
נוכיח בעזרת משפט המימדים ש dim(U+W)=dimV ואז המשל נובע.
 
<math>dim(U+W)=dimU+dimW-dim(U\cap W)</math>. מכיוון שW אינו מוכל בU החיתוך בינהם שונה מW. ולכן <math>dim(U\cap W)<dimW </math> ולכן <math>dimW-dim(U\cap W)\geq 1</math>. ביחד מקבלים <math>dim(U+W)=n-1 + dimW -dim(U\cap W)\geq n-1+1=n=dimV</math>. משל.
659
עריכות