שינויים

/* תרגיל */
<math>dim(U+W)=dimU+dimW-dim(U\cap W)</math>. מכיוון שW אינו מוכל בU החיתוך בינהם שונה מW. ולכן <math>dim(U\cap W)<dimW </math> ולכן <math>dimW-dim(U\cap W)\geq 1</math>. ביחד מקבלים <math>dim(U+W)=n-1 + dimW -dim(U\cap W)\geq n-1+1=n=dimV</math>. משל.
===תרגיל===
יהיו W1,W2 ת"מ של מ"ו V כך ש <math>dim(W_1+W_2)=\dim (W_1\cap W_2) +1</math>. הוכיחו כי <math>\{W_1,W_2\}=\{W_1+W_2,W_1\cap W_2\}</math>
 
פתרון:
מתקיים לפי נתון כי<math>\dim (W_1\cap W_2)\leq \dim W_1, \dim W_2 \leq dim(W_1+W_2)=\dim (W_1\cap W_2) +1</math>
ולכן לכל i מתקיים כי <math>\dim W_i </math> שווה למימד הסכום או למימד החיתוך. כיוון שיש הכלה <math>W_1\cap W_2\subseteq W_1,W_2\subseteq W_1+W_2 </math> אז יתקיים שיוויון.
כעת לא ייתכן כי <math>W_1,W_2</math> שניהם שווים כי אז מימד הסכום היה שווה למימד החיתוך.
=== תרגיל ===
יהא <math>V</math> מ"ו מימד אי זוגי <math>\dim V=2n+1</math> ויהיו <math>W_{1},W_{2},U_{1},U_{2}</math> ת"מ המקיימים כי <math>W_{1}+W_{2}=V=U_{1}+U_{2}</math> הוכיחו <math>\left(W_{1}\cap U_{1}\right)+\left(W_{1}\cap U_{2}\right)+\left(W_{2}\cap U_{1}\right)+\left(W_{2}\cap U_{2}\right)\neq\left\{ 0\right\}</math>
==קואורדינטות==
2,232
עריכות