שינויים

קפיצה אל: ניווט, חיפוש
<math>dim(U+W)=dimU+dimW-dim(U\cap W)</math>. מכיוון שW אינו מוכל בU החיתוך בינהם שונה מW. ולכן <math>dim(U\cap W)<dimW </math> ולכן <math>dimW-dim(U\cap W)\geq 1</math>. ביחד מקבלים <math>dim(U+W)=n-1 + dimW -dim(U\cap W)\geq n-1+1=n=dimV</math>. משל.
 
 
==קואורדינטות==
משפט: יהא V מ"ו מעל שדה F, יהי <math>B=\{v_1,...,v_n\}</math> בסיס ל-V ויהי <math>v\in V</math> וקטור. אזי ל-v יש הצגה יחידה כצירוף לינארי לפי הבסיס B. כלומר, אם מתקיים <math>v=a_1v_1+...+a_nv_n=b_1v_1+...+b_nv_n</math> אזי בהכרח <math>\forall i:a_i=b_i</math>. (קל להוכיח את זה על ידי חיסור הצד הימני של המשוואה מהצד השמאלי, מקבלים צירוף לינארי שמתאפס עם מקדמים <math>a_i-b_i</math>.)
 
הגדרה: יהיו V,B וv כמו במשפט. אזי '''וקטור הקואורדינטות''' של v לפי בסיס B, מסומן <math>[v]_B\in\mathbb{F}^n</math> מוגדר להיות <math>[v]_B=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix}</math> כאשר <math>v=a_1v_1+...+a_nv_n</math> ההצגה הלינארית היחידה הקיימת לפי המשפט.
 
 
'''חשוב לזכור''' <math>[v]_B=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix}</math> אם"ם <math>v=a_1v_1+...+a_nv_n</math>
 
תרגיל קל אבל חשוב הוא להראות שלכל בסיס B מתקיים ש <math>v=0</math> אם"ם <math>[v]_B=0</math>.
 
 
הערה: במרחבים הוקטוריים שאנו נעבוד איתם יש '''בסיסים סטנדרטיים'''. הייחוד של הבסיסים הסטנדרטיים הוא שקל מאד לחשב קואורדינטות לפיהם. נסתכל במרחבים וקטורים ובבסיסים הסטנדרטיים שלהם:
 
 
{| border="1" align="center" style="text-align:center;"
|מרחב וקטורי
|בסיס סטנדרטי
|-
|<math>\mathbb{F}^n</math>
|<math>(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)</math>
|-
|<math>\mathbb{F}^{m\times n}</math>
|<math>
\begin{pmatrix}1 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0\end{pmatrix},
\begin{pmatrix}0 & 1 & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0\end{pmatrix},...,
\begin{pmatrix}0 & \cdots & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0\end{pmatrix},...,
\begin{pmatrix}0 & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix}
</math>
|-
|<math>\mathbb{F}_n[x]</math>
|<math>1,x,x^2,...,x^n</math>
|-
|}
 
 
'''דוגמא.'''
חשב את הקואורדינטות של הוקטור <math>v=1+2x-x^2</math> לפי הבסיס הסטנדרטי S של <math>\mathbb{R}_3[x]</math>. למעשה הפולינום כמעט מוצג כצירוף לינארי של איברי הבסיס:
 
<math>v=a_1v_1+a_2v_2+a_3v_3+a_4v_4 = 1\cdot 1 + 2\cdot x + (-1)\cdot x^2 + 0\cdot x^3</math>.
 
לפיכך <math>[v]_S=(1,2,-1,0)</math>.
 
 
'''דוגמא.'''
חשב את הקואורדינטות של הוקטור <math>(a,b,c)</math> לפי הבסיס הסטנדרטי S של <math>\mathbb{F}^n</math>. קל לראות ש <math>[v]_S = (a,b,c)</math>.
 
'''דוגמא.'''
<math>V=\mathbb{R}^2,B=\{(1,1),(1,-1)\}</math> מצא את הקואורדינטות של הוקטור <math> v=(a,b)</math> לפי הבסיס B. במקרה הכינותי מראש-
 
 
<math>v=\frac{a+b}{2}\cdot (1,1)+\frac{a-b}{2}\cdot (1,-1)</math>
 
 
ולכן לפי ההגדרה <math>[v]_B=(\frac{a+b}{2},\frac{a-b}{2})</math>
 
 
אנו רואים שאין זה קל למצוא את הקואורדינטות לפי בסיס כלשהו שאינו הסטנדרטי.
 
'''טענה.'''
 
יהא V מ"ו ויהי B בסיס לו. יהיו <math>u_1,...,u_k\in V</math> וקטורים כלשהם. הוכח:
*<math>u_1,...,u_k</math> בת"ל אם"ם <math>[u_1]_B,...,[u_k]_B</math> בת"ל
*<math>w\in span\{u_1,...,u_k\}</math> אם"ם <math>[w]_B\in span\{[u_1]_B,...,[u_k]_B\}</math>
 
נוכיח טענה זו בהמשך, לאחר שנלמד על העתקות לינאריות. כעת נניח שהיא נכונה ונתרכז בכלי החישובי המשמעותי שקיבלנו; כל בדיקה/חישוב של תלות לינארית או פרישה בכל מרחב וקטורי (מטריצות, פולינומים, פונקציות) יכול בעצם להעשות במרחב הוקטורי המוכר והנוח <math>\mathbb{F}^n</math>.
 
==צירופים לינאריים - דוגמאות נוספות==
<math>=\Big\{x\begin{pmatrix} 3 & 2 \\ 4 & -3\end{pmatrix}+y\begin{pmatrix}6 & 9 \\ 4 & -6 \end{pmatrix}\Big\}=span\Big\{\begin{pmatrix} 3 & 2 \\ 4 & -3\end{pmatrix},\begin{pmatrix}6 & 9 \\ 4 & -6 \end{pmatrix}\Big\}</math>
==קואורדינטות==
משפט: יהא V מ"ו מעל שדה F, יהי <math>B=\{v_1,...,v_n\}</math> בסיס ל-V ויהי <math>v\in V</math> וקטור. אזי ל-v יש הצגה יחידה כצירוף לינארי לפי הבסיס B. כלומר, אם מתקיים <math>v=a_1v_1+...+a_nv_n=b_1v_1+...+b_nv_n</math> אזי בהכרח <math>\forall i:a_i=b_i</math>. (קל להוכיח את זה על ידי חיסור הצד הימני של המשוואה מהצד השמאלי, מקבלים צירוף לינארי שמתאפס עם מקדמים <math>a_i-b_i</math>.)
 
הגדרה: יהיו V,B וv כמו במשפט. אזי '''וקטור הקואורדינטות''' של v לפי בסיס B, מסומן <math>[v]_B\in\mathbb{F}^n</math> מוגדר להיות <math>[v]_B=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix}</math> כאשר <math>v=a_1v_1+...+a_nv_n</math> ההצגה הלינארית היחידה הקיימת לפי המשפט.
 
 
'''חשוב לזכור''' <math>[v]_B=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix}</math> אם"ם <math>v=a_1v_1+...+a_nv_n</math>
 
תרגיל קל אבל חשוב הוא להראות שלכל בסיס B מתקיים ש <math>v=0</math> אם"ם <math>[v]_B=0</math>.
 
 
הערה: במרחבים הוקטוריים שאנו נעבוד איתם יש '''בסיסים סטנדרטיים'''. הייחוד של הבסיסים הסטנדרטיים הוא שקל מאד לחשב קואורדינטות לפיהם. נסתכל במרחבים וקטורים ובבסיסים הסטנדרטיים שלהם:
 
 
{| border="1" align="center" style="text-align:center;"
|מרחב וקטורי
|בסיס סטנדרטי
|-
|<math>\mathbb{F}^n</math>
|<math>(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)</math>
|-
|<math>\mathbb{F}^{m\times n}</math>
|<math>
\begin{pmatrix}1 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0\end{pmatrix},
\begin{pmatrix}0 & 1 & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0\end{pmatrix},...,
\begin{pmatrix}0 & \cdots & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0\end{pmatrix},...,
\begin{pmatrix}0 & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix}
</math>
|-
|<math>\mathbb{F}_n[x]</math>
|<math>1,x,x^2,...,x^n</math>
|-
|}
 
 
'''דוגמא.'''
חשב את הקואורדינטות של הוקטור <math>v=1+2x-x^2</math> לפי הבסיס הסטנדרטי S של <math>\mathbb{R}_3[x]</math>. למעשה הפולינום כמעט מוצג כצירוף לינארי של איברי הבסיס:
 
<math>v=a_1v_1+a_2v_2+a_3v_3+a_4v_4 = 1\cdot 1 + 2\cdot x + (-1)\cdot x^2 + 0\cdot x^3</math>.
 
לפיכך <math>[v]_S=(1,2,-1,0)</math>.
 
 
'''דוגמא.'''
חשב את הקואורדינטות של הוקטור <math>(a,b,c)</math> לפי הבסיס הסטנדרטי S של <math>\mathbb{F}^n</math>. קל לראות ש <math>[v]_S = (a,b,c)</math>.
 
'''דוגמא.'''
<math>V=\mathbb{R}^2,B=\{(1,1),(1,-1)\}</math> מצא את הקואורדינטות של הוקטור <math> v=(a,b)</math> לפי הבסיס B. במקרה הכינותי מראש-
 
 
<math>v=\frac{a+b}{2}\cdot (1,1)+\frac{a-b}{2}\cdot (1,-1)</math>
 
 
ולכן לפי ההגדרה <math>[v]_B=(\frac{a+b}{2},\frac{a-b}{2})</math>
 
 
אנו רואים שאין זה קל למצוא את הקואורדינטות לפי בסיס כלשהו שאינו הסטנדרטי.
 
'''טענה.'''
 
יהא V מ"ו ויהי B בסיס לו. יהיו <math>u_1,...,u_k\in V</math> וקטורים כלשהם. הוכח:
*<math>u_1,...,u_k</math> בת"ל אם"ם <math>[u_1]_B,...,[u_k]_B</math> בת"ל
*<math>w\in span\{u_1,...,u_k\}</math> אם"ם <math>[w]_B\in span\{[u_1]_B,...,[u_k]_B\}</math>
 
נוכיח טענה זו בהמשך, לאחר שנלמד על העתקות לינאריות. כעת נניח שהיא נכונה ונתרכז בכלי החישובי המשמעותי שקיבלנו; כל בדיקה/חישוב של תלות לינארית או פרישה בכל מרחב וקטורי (מטריצות, פולינומים, פונקציות) יכול בעצם להעשות במרחב הוקטורי המוכר והנוח <math>\mathbb{F}^n</math>.
659
עריכות