שינויים

/* דוגמא */
</math>
כעת נמצא את מטריצת המעבר. שימו לב שאנו עוסקים במקרה מיוחד. המרחב שלנו אינו מרחב מוכר, ואנו צריכים למצוא לו בסיס סטנרטי על מנת לקחת את הקואורדינטות של איברי הבסיס הנתון לפי אותו בסיס סטנדרטי שנמציא. נדרג מטריצה ששורתיה עם הוקטורים הנ"ל. כיוון שמרחב השורות לא משתנה נקבל בסיס אחר יותר נח.
כל הוקטורים בV הינם צירופים לינאריים של הבסיס הנתון. ניקח צירוף לינארי כללי ונראה בקלות שהוא מהצורה <math>(\begin{pmatrix}1 & 0 & -s,t,s,r))1 &1 \\-2 & 1 & 2 & 0 \\0 &-1 & 0 &1 \end{pmatrix}\to \begin{pmatrix}1 & 0 & -1 &1 \\0 & 1 & 0 & 2 \\0 &-1 & 0 &1 \end{pmatrix}\to \begin{pmatrix}1 & 0 & -1 &1 \\0 & 1 & 0 & 2 \\0 &0 & 0 &3 \end{pmatrix}\to \begin{pmatrix}1 & 0 & -1 &0 \\0 & 1 & 0 & 0 \\0 &0 & 0 &1 \end{pmatrix}</math> ולכן בסיס סטנדרטי שקל להוציא את הקואורדינטות לפיו יהיה אלטרנטיבי למרחב שלנו הוא <math>S_V=\{(-1,0,1,0),(0,1,0,0),(0,0,0,1)\}</math>. מדוע הוא סטנדרטי? קל מאד לראות שלכל וקטור במרחב <math>[(-x,y,x,z)]_{S_V}=(x,y,z)</math>.
659
עריכות