שינויים

קפיצה אל: ניווט, חיפוש

88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/9

נוספו 3,700 בתים, 13:46, 11 באוגוסט 2020
/* תרגיל חשוב! */
הוכחה: ישירות מתרגיל הקודם, <math>[I]_B^{B'}\cdot [I]_{B'}^{B} =[I]_{B}^{B} =I </math>
=== דוגמא תרגיל===יהי <math>V</math> מ"ו, <math>B,C</math> בסיסים, <math>T:V\to V</math> הע"ל. הוכיחו או הפריכו: <math>([T]_B^C)^{-1}=[T]_C^B</math>. ====פתרון====ממש לא. ראשית, מי אמר שמטריצה שמייצגת העתקה בכלל הפיכה? ושנית, כדאי להבין מה כן נותן הכפל בין המטריצות הללו: לפי הגדרת ההרכבה נקבל: <math>[T]_B^C\cdot [T]_C^B=[T^2]_B</math>, ואכן: <math>[T]_B^C\cdot [T]_C^B[v]_B=[T]_B^C[Tv]_C=[T^2v]_B</math>. === תרגיל ===
<math>V=\mathbb{R}_{2}[x],\,W=\mathbb{R}^{2}</math>. ויהיו
<math>E=\{-1,2+x,3+x+x^{2}\},F=\{\left(\begin{array}{c}
\end{pmatrix}
</math>
 
=== תרגיל חשוב!===
תהא <math>T:\mathbb{R}^{2\times2}\to\mathbb{R}^{2\times2}</math> המקיימת כי
<math>T\left(\begin{array}{cc}
1 & 0\\
0 & 0
\end{array}\right),T\left(\begin{array}{cc}
0 & 1\\
0 & 0
\end{array}\right),T\left(\begin{array}{cc}
0 & 0\\
1 & 0
\end{array}\right)\in\text{span}\left\{ \left(\begin{array}{cc}
1 & 1\\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0\\
1 & 0
\end{array}\right)\right\}</math>
ובנוסף נתונה מטריצה מייצגת שלה
<math>[T]_{C}^{B}=\left(\begin{array}{cccc}
1 & 2 & 3 & 4\\
0 & 5 & 6 & 7\\
0 & 0 & 8 & x\\
0 & 0 & 4 & x
\end{array}\right)</math>
(עבור איזה שהן בסיסים <math>B,C</math>) מצאו את <math>x</math>.
 
*קבעו איזה איברים של השורה האחרונה של <math>[T^{10}]_{S}^{S}</math> הם בודאות ששוים לאפס .(כאשר S הוא הבסיס הסטנדרטי).
 
*הוכיחו שקיים בסיס <math>D</math> ל <math>\mathbb{R}^{2\times2}</math> כך המטריצה המייצגת מהצורה
<math>[T]_{D}^{D}=\left(\begin{array}{cccc}
0 & * & * & *\\
0 & * & * & *\\
0 & * & * & *\\
0 & * & * & *
\end{array}\right)</math>
 
ויש בנוסף שורת אפסים
 
=== תרגיל חשוב! ===
יהא <math>V=\mathbb{R}_{2}[x]</math> ושני בסיסים <math>B=\left\{ 2+x,3-x+x^{2},-2+4x-x^{2}\right\} ,C=\left\{ 1+x+x^{2},2+2x,x+2x^{2}\right\}</math> שני בסיסים של <math>V</math>. בנוסף, נסמן <math>S=\left\{ 1,x,x^{2}\right\}</math> את הבסיס הסטנדרטי של <math>V</math>.
 
*מצאו את מטריצות המעבר <math>[I]_{C}^{B},[I]_{S}^{B},[I]_{C}^{S}</math> ומצאו את <math>[I]_{B}^{C}</math>
 
* נגדיר <math>T:V\to V</math> ע"י הכלל <math>T(p(x))=p(x+1)</math>. מצאו את המטריצה <math>[T]_{C}^{B},[T]_{C}^{C}</math>.
 
 
 
** הוכיחו/הפריכו: קיימת <math>\hat{T}:\mathbb{R}_{2}[x]\to\mathbb{R}_{2}[x]</math> כך ש <math>[\hat{T}\circ T]_{C}^{B} =\left(\begin{array}{ccc}
3 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0
\end{array}\right)</math>
וגם<math>
[T\circ\hat{T}]_{B}^{C} =\left(\begin{array}{ccc}
0 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0
\end{array}\right)
</math>
**הוכיחו/הפריכו: קיימת <math>\hat{T}:\mathbb{R}_{2}[x]\to\mathbb{R}_{2}[x]</math> כך ש
<math>[\hat{T}\circ T]_{B}^{B} =\left(\begin{array}{ccc}
1 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 0
\end{array}\right)</math>
וגם
<math>[T\circ\hat{T}]_{S}^{C} =\left(\begin{array}{ccc}
1 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 3
\end{array}\right)</math>
 
** מצאו לאילו ערכי <math>a</math> קיימת <math>\hat{T}:\mathbb{R}_{2}[x]\to\mathbb{R}_{2}[x]</math> כך ש
<math>[\hat{T}\circ T]_{C}^{B} =\left(\begin{array}{ccc}
1 & 2 & 3\\
4 & 5 & 6\\
7 & 8 & a
\end{array}\right)</math>
===אלגוריתם למציאת מטריצה המייצגת את ההעתקה בין בסיסים כלשהם===
 
הנה אלגוריתם שמכליל את הדוגמא הקודמת.
יהיו מ"ו V,W והעתקה T בינהם ובסיסים E,F בדיוק כמו בהגדרה לעיל. אזי:
===אלגוריתם למציאת העתקה מפורשת לפי תמונות איברי הבסיס בלבד===
תהי T העתקה לינארית הנתונה על ידי התמונות של איברי בסיס <math>BE=\{v_1,...,v_n\}</math>. רוצים למצוא את <math>Tv</math> עבור <math>v\in V</math> וקטור כלשהו.
#נבצע את האלגוריתם לעיל על מנת למצוא את <math>[T]^E_S</math>.
'''====פתרון.'''====דבר ראשון נמצא את המטריצה המייצגת מB מ <math>B=\{v_1,v_2,v_3\}</math> לבסיס הסטדנרטי של הפולינומים S. נשים את התמונות בעמודות
<math>[T]^B_S =\begin{pmatrix}
</math>
כעת נמצא את מטריצת המעבר. שימו לב שאנו עוסקים במקרה מיוחד. המרחב שלנו אינו מרחב מוכר, ואנו צריכים למצוא לו בסיס סטנרטי על מנת לקחת את הקואורדינטות של איברי הבסיס הנתון לפי אותו בסיס סטנדרטי שנמציא. נדרג מטריצה ששורתיה עם הוקטורים הנ"ל. כיוון שמרחב השורות לא משתנה נקבל בסיס אחר יותר נח.
כל הוקטורים בV הינם צירופים לינאריים של הבסיס הנתון. ניקח צירוף לינארי כללי ונראה בקלות שהוא מהצורה <math>(\begin{pmatrix}1 & 0 & -s,t,s,r))1 &1 \\-2 & 1 & 2 & 0 \\0 &-1 & 0 &1 \end{pmatrix}\to \begin{pmatrix}1 & 0 & -1 &1 \\0 & 1 & 0 & 2 \\0 &-1 & 0 &1 \end{pmatrix}\to \begin{pmatrix}1 & 0 & -1 &1 \\0 & 1 & 0 & 2 \\0 &0 & 0 &3 \end{pmatrix}\to \begin{pmatrix}1 & 0 & -1 &0 \\0 & 1 & 0 & 0 \\0 &0 & 0 &1 \end{pmatrix}</math> ולכן בסיס סטנדרטי שקל להוציא את הקואורדינטות לפיו יהיה אלטרנטיבי למרחב שלנו הוא <math>S_V=\{(-1,0,1,0),(0,1,0,0),(0,0,0,1)\}</math>. מדוע הוא סטנדרטי? קל מאד לראות שלכל וקטור במרחב <math>[(-x,y,x,z)]_{S_V}=(x,y,z)</math>.
2,232
עריכות