הבדלים בין גרסאות בדף "88-132 אינפי 1 סמסטר א' תשעב/מערך תרגול/סדרות/קושי"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
 
שורה 7: שורה 7:
  
 
;<font size=4 color=#3c498e>הגדרה.</font>
 
;<font size=4 color=#3c498e>הגדרה.</font>
סדרה <math>a_n</math> נקראת '''סדרת קושי''' אם לכל <math>\varepsilon>0</math> קיים <math>N_\varepsilon\in\N</math> כך שלכל <math>m,n>N_\varepsilon</math> מתקיים <math>|a_m-a_n|<\varepsilon</math>
+
סדרה <math>a_n</math> נקראת '''סדרת קושי''' אם לכל <math>\varepsilon>0</math> קיים <math>N_\varepsilon\in\N</math> כך שלכל <math>m>n>N_\varepsilon</math> מתקיים <math>|a_m-a_n|<\varepsilon</math>
  
 
במילים, אם לכל מרחק <math>\varepsilon</math> קיים מקום בסדרה כך שהחל ממנו ומעלה המרחק בין '''כל שני אברים''' שואף ל-0, אזי הסדרה הנה סדרת קושי.
 
במילים, אם לכל מרחק <math>\varepsilon</math> קיים מקום בסדרה כך שהחל ממנו ומעלה המרחק בין '''כל שני אברים''' שואף ל-0, אזי הסדרה הנה סדרת קושי.
שורה 33: שורה 33:
  
  
<font size=4 color=#a7adcd>'''תרגיל.'''</font>
+
;<font size=4 color=#a7adcd>תרגיל.</font>
 
+
תהי סדרה <math>\{a_n\}</math> כך ש- <math>|a_{n+1}-a_n|\le p|a_n-a_{n-1}|</math> עבור <math>0<p<1</math> . הוכח כי <math>\{a_n\}</math> מתכנסת.
תהי סדרה <math>\{a_n\}</math> כך ש- <math>|a_{n+1}-a_n|\le p|a_n-a_{n-1}|</math> עבור <math>0<p<1</math> . הוכח ש- <math>\{a_n\}</math> מתכנסת.
+
  
 
;פתרון
 
;פתרון
נוכיח ש- <math>\{a_n\}</math> סדרת קושי, ולכן מתכנסת.
+
נוכיח כי <math>\{a_n\}</math> סדרת קושי, ולכן מתכנסת.
  
דבר ראשון, נשים לב ש- <math>|a_{n+1}-a_n|\le p|a_n-a_{n-1}|\le p^2|a_{n-1}-a_{n-2}|\le\cdots\le p^{n-1}|a_2-a_1|</math> . נסמן <math>d=|a_2-a_1|</math> ולכן סה"כ <math>|a_{n+1}-a_n|\le p^{n-1}d</math>
+
ראשית, נשים לב כי <math>|a_{n+1}-a_n|\le p|a_n-a_{n-1}|\le p^2|a_{n-1}-a_{n-2}|\le\cdots\le p^{n-1}|a_2-a_1|</math> .
 +
 
 +
נסמן <math>d=|a_2-a_1|</math> ולכן סה"כ <math>|a_{n+1}-a_n|\le p^{n-1}d</math>
  
 
כעת,
 
כעת,
  
<math>|a_m-a_n|=|a_m-a_{m-1}+a_{m-1}-a_{m-2}+\cdots-a_{n+1}+a_{n+1}-a_n|\le</math>
+
<math>\begin{align}
 +
|a_m-a_n|&=\Big|a_m-a_{m-1}+a_{m-1}-a_{m-2}+\cdots+a_{n+2}-a_{n+1}+a_{n+1}-a_n\Big|\\
 +
&\le|a_m-a_{m-1}|+|a_{m-1}-a_{m-2}|+\cdots+|a_{n+2}-a_{n+1}|+|a_{n+1}-a_n|\\
 +
&\le p^{m-2}d+\cdots+p^{n-1}d=p^{n-1}d(p^{m-n-1}+\cdots+1)=p^{n-1}d\left(\dfrac{1-p^{m-n-1}}{1-p}\right)\le p^{n-1}\dfrac{d}{1-p}\to0
 +
\end{align}</math>
  
<math>\le|a_m-a_{m-1}|+|a_{m-1}-a_{m-2}|+\cdots+|a_{n+1}-a_n|\leq</math>
+
(לפי מה שהראינו)
  
<math>\le p^{m-2}d+\cdots+p^{n-1}d=p^{n-1}d(p^{m-n-1}+\cdots+1)=p^{n-1}d\left(\frac{1-p^{m-n-1}}{1-p}\right)\le p^{n-1}\frac{d}{1-p}\to0</math> (לפי מה שהראינו)
+
מכיון ש- <math>p^n\to0</math> עבור <math>p<1</math> .
  
מכיון ש- <math>p^n\to0</math> עבור p<1.
 
 
 
<font size=4 color=#a7adcd>'''תרגיל.'''</font>
 
  
 +
;<font size=4 color=#a7adcd>תרגיל.</font>
 
תהי <math>a_n</math> סדרה המוגדרת על-ידי כלל הנסיגה
 
תהי <math>a_n</math> סדרה המוגדרת על-ידי כלל הנסיגה
  
שורה 62: שורה 64:
  
 
;הוכחה
 
;הוכחה
נוכיח כי זוהי סדרת קושי ולכן מתכנסת. יהי <math>\epsilon>0</math> כלשהו. צריך למצוא מקום בסדרה שהחל ממנו המרחק בין כל שני אברים קטן מ- <math>\epsilon</math> . נביט במרחק בין שני אברים כלשהם:
+
נוכיח כי זוהי סדרת קושי ולכן מתכנסת. יהי <math>\varepsilon>0</math> . צריך למצוא מקום בסדרה שהחל ממנו המרחק בין כל שני אברים קטן מ- <math>\varepsilon</math> . נביט במרחק בין שני אברים כלשהם:
  
<math>|a_m-a_n|=\Big|a_m-a_{m-1}+a_{m-1}-\cdots+a_{n+1}-a_n\Big|\le</math>
+
<math>\begin{align}
 +
|a_m-a_n|&=\Big|a_m-a_{m-1}+a_{m-1}-\cdots-a_{n+1}+a_{n+1}-a_n\Big|\\
 +
&\le|a_m-a_{m-1}|+\cdots+|a_{n+1}-a_n|=\dfrac1{m^2}+\cdots+\dfrac1{(n+1)^2}\\&\le\dfrac1{m(m-1)}+\cdots+\frac1{(n+1)n}\\
 +
&=\dfrac1{m-1}-\dfrac1m+\dfrac1{m-2}-\dfrac1{m-1}+\cdots+\dfrac1n-\dfrac1{n+1}=\dfrac1n-\dfrac1m\le\dfrac1n\end{align}</math>
  
לפי אי-שוויון המשולש זה קטן או שווה ל:
+
נעזרנו בנוסחא <math>\dfrac1{k(k-1)}=\dfrac1{k-1}-\dfrac1k</math>
  
<math>|a_m-a_{m-1}|+\cdots+|a_{n+1}-a_n|=\frac{1}{m^2}+\cdots+\frac{1}{(n+1)^2}\le</math>
+
וכרגיל, עבור <math>N_\varepsilon>\dfrac1{\varepsilon}</math> אנו מקבלים את מה שצריך לכל <math>m>n>N_\varepsilon</math>
  
<math>\le\frac{1}{m(m-1)}+\cdots+\frac{1}{(n+1)n}=</math>
 
  
כעת נעזר בנוסחא שקל להוכיחה: <math>\frac{1}{m(m-1)}=\frac{1}{m-1}-\frac{1}{m}</math>
+
;<font size=4 color=#a7adcd>תרגיל.</font>
 
+
תהי <math>a_n</math> סדרה המוגדרת על-ידי כלל הנסיגה
<math>=\frac{1}{m-1}-\frac{1}{m}+\frac{1}{m-2}-\frac{1}{m-1}+\cdots+\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n}-\frac{1}{m}\le\frac{1}{n}</math>
+
 
+
וכרגיל, עבור <math>N_\epsilon>\frac{1}{\epsilon}</math> אנו מקבלים את מה שצריך לכל <math>m>n>N_\epsilon</math>
+
 
+
 
+
<font size=4 color=#a7adcd>'''תרגיל.'''</font>
+
 
+
תהי <math>a_n</math> סדרה המוגדרת על ידי כלל הנסיגה
+
  
:<math>a_{n+1}=a_n+\frac{1}{n+1}</math>
+
<math>a_{n+1}=a_n+\dfrac1{n+1}</math>
  
 
הוכח כי <math>\lim\limits_{n\to\infty}a_n=\infty</math> (כלומר הסדרה מתכנסת במובן הרחב לאינסוף).
 
הוכח כי <math>\lim\limits_{n\to\infty}a_n=\infty</math> (כלומר הסדרה מתכנסת במובן הרחב לאינסוף).
 
  
 
;הוכחה
 
;הוכחה
דבר ראשון, טריוויאלי להוכיח כי הסדרה הנה מונוטונית עולה שכן <math>a_{n+1}-a_n=\frac{1}{n+1}>0</math>.
+
דבר ראשון, טריוויאלי להוכיח כי הסדרה הנה מונוטונית עולה שכן <math>a_{n+1}-a_n=\dfrac1{n+1}>0</math> .
  
 
לכן, כפי שלמדנו, מספיק להוכיח כי הסדרה אינה מתכנסת. לצורך זה, מספיק להוכיח שהיא אינה סדרת קושי.
 
לכן, כפי שלמדנו, מספיק להוכיח כי הסדרה אינה מתכנסת. לצורך זה, מספיק להוכיח שהיא אינה סדרת קושי.
  
ניקח <math>\epsilon=\frac{1}{2}</math>. יהי <math>N\in\N</math> מקום כלשהו בסדרה, ויהי <math>n>N</math> . ניקח <math>m=2n</math> . מתקיים,
+
ניקח <math>\varepsilon=\tfrac12</math>. יהי <math>N\in\N</math> מקום כלשהו בסדרה, ויהי <math>n>N</math> . ניקח <math>m=2n</math> . מתקיים:
 
+
<math>|a_{2n}-a_n|=\Big|a_{2n}-a_{2n-1}+a_{2n-1}-a_{2n-2}+a_{2n-2}-\cdots+a_{n+1}-a_n\Big|=</math>
+
  
<math>=\frac{1}{2n}+\cdots+\frac{1}{n+1}\ge\frac{1}{2n}+\cdots+\frac{1}{2n}=\frac{n}{2n}=\frac{1}{2}</math>
+
<math>\begin{align}|a_{2n}-a_n|&=\Big|a_{2n}-a_{2n-1}+a_{2n-1}-\cdots-a_{n+1}+a_{n+1}-a_n\Big|\\
 +
&=\frac1{2n}+\cdots+\frac1{n+1}\ge\frac1{2n}+\cdots+\frac1{2n}=\frac{n}{2n}=\frac12\end{align}</math>
  
 
ולכן מתקיימת '''שלילת''' ההגדרה של קושי והסדרה הנ"ל אינה מתכנסת.
 
ולכן מתקיימת '''שלילת''' ההגדרה של קושי והסדרה הנ"ל אינה מתכנסת.

גרסה אחרונה מ־01:27, 16 בפברואר 2017

חזרה לסדרות

סדרות קושי

הגדרת התכנסות סדרה עד כה הסתמכה על קיום נקודת גבול L . אולם למדנו כי יש סדרות המתקרבות לנקודה שאינה שייכת לשדה, כמו \sqrt2 בשדה הרציונאלים. סדרה המתכנסות לשורש שתיים מעל הממשיים, בהכרח אינה מתכנסת מעל הרציונאלים.

נגדיר אפוא תכונה של סדרה השקולה מבחינת התנהגות להתכנסות, אך אינה דורשת קיום של נקודת גבול בשדה. עקרונית, נדרוש שאברי הסדרה יתקרבו זה לזה, ולא לנקודת עוגן מסוימת הלא היא נקודת הגבול.

הגדרה.

סדרה a_n נקראת סדרת קושי אם לכל \varepsilon>0 קיים N_\varepsilon\in\N כך שלכל m>n>N_\varepsilon מתקיים |a_m-a_n|<\varepsilon

במילים, אם לכל מרחק \varepsilon קיים מקום בסדרה כך שהחל ממנו ומעלה המרחק בין כל שני אברים שואף ל-0, אזי הסדרה הנה סדרת קושי.


משפט.

מעל שדה הממשיים סדרה מתכנסת אם"ם היא סדרת קושי.

ברור ממשפט זה, יחד עם הדוגמא של סדרה השואפת ל- \sqrt2 , שהמשפט אינו תקף מעל שדה הרציונאליים.


תרגיל.

תהי סדרה \{a_n\} כך ש- |a_n-a_{n-1}|<\dfrac1{2^n} . הוכח כי \{a_n\} מתכנסת.

פתרון

נוכיח כי \{a_n\} סדרת קושי, ולכן מתכנסת.

לפי הנתון

\begin{align}
|a_m-a_n|&=\Big|a_m-a_{m-1}+a_{m-1}-a_{m-2}+\cdots+a_{n+2}-a_{n+1}+a_{n+1}-a_n\Big|\\
&\le|a_m-a_{m-1}|+|a_{m-1}-a_{m-2}|+\cdots+|a_{n+2}-a_{n+1}|+|a_{n+1}-a_n|\\
&<\dfrac1{2^m}+\dfrac1{2^{m-1}}+\cdots+\dfrac1{2^{n+1}}=\dfrac1{2^{n+1}}\left[\frac1{2^{m-n-1}}+\cdots+1\right]\\
&=\dfrac1{2^{n+1}}\left[\dfrac{1-\frac1{2^{m-n}}}{1-\frac12}\right]=\frac1{2^n}\left[1-\frac1{2^{m-n}}\right]=\frac1{2^n}-\dfrac1{2^m}\le\dfrac1{2^n}\to0
\end{align}


תרגיל.

תהי סדרה \{a_n\} כך ש- |a_{n+1}-a_n|\le p|a_n-a_{n-1}| עבור 0<p<1 . הוכח כי \{a_n\} מתכנסת.

פתרון

נוכיח כי \{a_n\} סדרת קושי, ולכן מתכנסת.

ראשית, נשים לב כי |a_{n+1}-a_n|\le p|a_n-a_{n-1}|\le p^2|a_{n-1}-a_{n-2}|\le\cdots\le p^{n-1}|a_2-a_1| .

נסמן d=|a_2-a_1| ולכן סה"כ |a_{n+1}-a_n|\le p^{n-1}d

כעת,

\begin{align}
|a_m-a_n|&=\Big|a_m-a_{m-1}+a_{m-1}-a_{m-2}+\cdots+a_{n+2}-a_{n+1}+a_{n+1}-a_n\Big|\\
&\le|a_m-a_{m-1}|+|a_{m-1}-a_{m-2}|+\cdots+|a_{n+2}-a_{n+1}|+|a_{n+1}-a_n|\\
&\le p^{m-2}d+\cdots+p^{n-1}d=p^{n-1}d(p^{m-n-1}+\cdots+1)=p^{n-1}d\left(\dfrac{1-p^{m-n-1}}{1-p}\right)\le p^{n-1}\dfrac{d}{1-p}\to0
\end{align}

(לפי מה שהראינו)

מכיון ש- p^n\to0 עבור p<1 .


תרגיל.

תהי a_n סדרה המוגדרת על-ידי כלל הנסיגה

a_{n+1}=a_n+\frac{1}{(n+1)^2}

הוכח כי הסדרה מתכנסת.

הוכחה

נוכיח כי זוהי סדרת קושי ולכן מתכנסת. יהי \varepsilon>0 . צריך למצוא מקום בסדרה שהחל ממנו המרחק בין כל שני אברים קטן מ- \varepsilon . נביט במרחק בין שני אברים כלשהם:

\begin{align}
|a_m-a_n|&=\Big|a_m-a_{m-1}+a_{m-1}-\cdots-a_{n+1}+a_{n+1}-a_n\Big|\\
&\le|a_m-a_{m-1}|+\cdots+|a_{n+1}-a_n|=\dfrac1{m^2}+\cdots+\dfrac1{(n+1)^2}\\&\le\dfrac1{m(m-1)}+\cdots+\frac1{(n+1)n}\\
&=\dfrac1{m-1}-\dfrac1m+\dfrac1{m-2}-\dfrac1{m-1}+\cdots+\dfrac1n-\dfrac1{n+1}=\dfrac1n-\dfrac1m\le\dfrac1n\end{align}

נעזרנו בנוסחא \dfrac1{k(k-1)}=\dfrac1{k-1}-\dfrac1k

וכרגיל, עבור N_\varepsilon>\dfrac1{\varepsilon} אנו מקבלים את מה שצריך לכל m>n>N_\varepsilon


תרגיל.

תהי a_n סדרה המוגדרת על-ידי כלל הנסיגה

a_{n+1}=a_n+\dfrac1{n+1}

הוכח כי \lim\limits_{n\to\infty}a_n=\infty (כלומר הסדרה מתכנסת במובן הרחב לאינסוף).

הוכחה

דבר ראשון, טריוויאלי להוכיח כי הסדרה הנה מונוטונית עולה שכן a_{n+1}-a_n=\dfrac1{n+1}>0 .

לכן, כפי שלמדנו, מספיק להוכיח כי הסדרה אינה מתכנסת. לצורך זה, מספיק להוכיח שהיא אינה סדרת קושי.

ניקח \varepsilon=\tfrac12. יהי N\in\N מקום כלשהו בסדרה, ויהי n>N . ניקח m=2n . מתקיים:

\begin{align}|a_{2n}-a_n|&=\Big|a_{2n}-a_{2n-1}+a_{2n-1}-\cdots-a_{n+1}+a_{n+1}-a_n\Big|\\
&=\frac1{2n}+\cdots+\frac1{n+1}\ge\frac1{2n}+\cdots+\frac1{2n}=\frac{n}{2n}=\frac12\end{align}

ולכן מתקיימת שלילת ההגדרה של קושי והסדרה הנ"ל אינה מתכנסת.