שינויים

קפיצה אל: ניווט, חיפוש

88-165 תשעב סמסטר ב/תקצירי הרצאות

נוספו 2,517 בתים, 00:16, 3 באפריל 2012
/* הרצאה חמישית */
טיפלנו ב'''התפלגות משותפת''' של זוג משתנים מקריים X,Y (המוגדרים על אותו מרחב הסתברות), שהיא הפונקציה המתאימה לכל a,b את ההסתברות <math>\ P(X=a,Y=b)</math>. מן ההתפלגות המשותפת אפשר לשחזר את ההתפלגות של כל משתנה בנפרד. לסיכום הגדרנו מתי שני משתנים מקריים הם בלתי תלויים: אם לכל a,b מתקיים <math>\ P(X=a,Y=b) = P(X=a)P(Y=b)</math>.
 
=== הרצאה שישית ===
 
הגדרנו את ה[[תוחלת]] של משתנה מקרי - מעין ממוצע משוכלל (וגם משוקלל) של הערכים שהמשתנה יכול לקבל. אם הנקודות של המרחב הן בעלות אותה הסתברות ("התפלגות אחידה"), אז התוחלת שווה לממוצע של ערכי המשתנה. התוחלת היא הומוגנית (ממעלה ראשונה) ו[[פונקציה אדיטיבית|אדיטיבית]]: <math>\ E(X+Y)=E(X)+E(Y)</math>, וזאת לכל שני משתנים מקריים. תכונה חשובה זו מאפשרת לחשב תוחלות באמצעות פירוק המשתנה לסכום של משתנים פשוטים יותר, כגון משתנים מציינים של מאורעות במרחב.
 
אם X,Y שני משתנים מקריים, X|Y=b (קרי "X בהנתן Y=b") הוא משתנה מקרי, שההתפלגות שלו תלויה בערך של b. אפשר לקצר ולומר ש-X|Y הוא משתנה מקרי, שההתפלגות שלו תלויה ב-Y. למשתנה הזה יש תוחלת, (E(X|Y, שהיא פונקציה של Y. הוכחנו את '''חוק התוחלת החוזרת''' <math>\ E(E(X|Y))=E(X)</math>.
 
=== הרצאה שביעית ===
 
כדי לנתח את התוחלת של מכפלות, הגדרנו את השונות המשותפת של שני משתנים: <math>\ Cov(X,Y) = E(XY)-E(X)E(Y)</math>. זוהי פונקציה סימטרית, הומוגנית ואדיטיבית בשני הרכיבים. אם X,Y בלתי תלויים, אז מחוק התוחלת החוזרת נובע ש- <math>\ E(XY)=E(E(XY|Y))=E(YE(X|Y))=E(YE(X))=E(X)E(Y)</math>, כלומר, השונות המשותפת שלהם היא אפס. משתנים כאלה נקראים '''בלתי מתואמים''' (כל שני משתנים בלתי תלויים הם בלתי מתואמים, אבל ההיפך נכון רק במקרה המיוחד שבו כל אחד משני המשתנים יכול לקבל רק שני ערכים).
 
ה'''שונות''' של משתנה מקרי X מוגדרת כשונות המשותפת שלו עם עצמו: <math>\ V(X)=Cov(X,X)=E(X^2)-E(X)^2=E((X-E(X))^2)</math>. זהו גודל חיובי, השווה לאפס רק אם המשתנה קבוע (בהסתברות 1). השונות היא פונקציה הומוגנית (מדרגה 2). כאנלוגיה לחוק התוחלת החוזרת, הוכחנו את נוסחת פירוק השונות: <math>\ V(X)=V(E(X|Y))+E(V(X|Y))</math>.