שינויים

קפיצה אל: ניווט, חיפוש

88-165 תשעב סמסטר ב/תקצירי הרצאות

הוסר בית אחד, 19:44, 1 במאי 2012
/* הרצאה עשירית */
=== הרצאה עשירית ===
מעבר להתפלגויות הקלאסיות, חשוב לדעת גם לטפל בתופעות שבהן חישוב ישיר הוא מסובך או בלתי אפשרי, כדי לקבל קירוב להתנהגות שלהן. בחנו מקרוב את הדוגמא המפורסמת של "פרדוקס יום ההולדת": הסיכוי שבין 23 אנשים יהיו שניים שנולדו באותו יום בשנה הוא מעט יותר מחצי, למרות ש-23 "הרבה יותר קטן" מ-365. ההסבר הוא בחישוב הסיכוי לכך שאין התנגשויות בבחירה אקראית של ימי ההולדת: מתברר שהסיכוי הזה יורד בקצב קרוב ל- <math>\ exp(-\frac{n^2}{2K}})</math> כאשר n הוא מספר האנשים (כאן 23) ו-K גודל המרחב שבו הם בוחרים.
בדרך כלל קל יותר לחשב תוחלות מאשר הסתברויות (במיוחד אם מדובר במשתנה שאפשר לפרק לסכום של משתנים מציינים רבים). גם לגבי ימי הולדת, קל לחשב שתוחלת מספר ההתנגשויות (כלומר, זוגות של אנשים שנולדו באותו יום) היא <math>\ \frac{n(n-1)}{2K}</math>, כך שמספר ההתנגשויות עולה באופן ריבועי עם מספר האנשים, וכאשר n הוא מסדר הגודל של <math>\ \sqrt{K}</math> אפשר כבר לצפות להתנגשויות. דיברנו גם על המשתנה של זמן ההמתנה (להתנגשות הראשונה), שגם התוחלת שלו - שאותה לא חישבנו - פרופורציונלית לשורש גודל המרחב.
את הנימוקים האלה אפשר להפוך על ראשם כדי להעריך את גודל המרחב (כשזה אינו ידוע). אם המחשב בוחר מספרים באקראי ואחרי 979 צעדים מופיע לראשונה אותו מספר בפעם השניה, סביר להעריך שגודל המרחב הוא כ- 979 בריבוע, היינו כמליון.
טכניקת הפירוק לסכום של משתנים מציינים מאפשרת לתאר את המבנה של גרף מקרי (שבו יש n קודקודים, וכל אחת מ-n-מעל-2 הקשתות הפוטנציאליות מתממשת בהסתברות p, באופן בלתי תלוי).
=== הרצאה אחת-עשרה ===
הכנה לרציף.