שינויים

הייתה טעות בדוגמה של CNF בC_2. התייחסות ל1 כמו שהוא ו0 כשלילה, כשזה צריך להיות הפוך.
סיכום הנושא המלא נמצא בדף [[88-101 חשיבה מתמטית]].
אזהרה: דף זה הוא נועד להכיר ללומד המתחיל את החשיבה הלוגיקית הקשיחה. כיוון שמדובר בלומד המתחיל ואיננו רוצים להבריח אותו, הדוגמאות וההסברים לוקים לעיתים בדיוק "מעגלים פינות" (מבחינת דיוק קשיח ופורמלי ) לטובת הסבר ברור ומסביר פנים.
==פסוקים וקַשָּרִים, פרדיקטים וכַּמָּתִים, הצרנה וטבלאות אמת==
=== אטומים, פסוקים וקשרים===
אם הביטוי <math>A \leftrightarrow B</math> הינו טאוטולוגיה (במילים: A קורה אמ"מ B קורה)
====תרגיל: ====הוכח באמצעות טבלאות אמת שניתן להציג את הקשרים 'גרירה' ו'וגם' באמצעות 'או' ושלילה בלבד
פתרון:
ומתקיים <math>A \and B \equiv \neg(\neg A \or \neg B)</math>
====תכונות הקשרים====
כעת נוכל לנסח את הטענה בצורה מדויקת, תכונות הקשרים: לכל שלוש פסוקים <math>A,B,C</math> מתקיים כי:
* קיבוציות <math>(A\land B) \land C \equiv A\land (B \land C), (A\lor B) \lor C \equiv A\lor (B \lor C) </math>
פיתרון: לא. בא' יש פעמיים את אותו דבר, בגלל השקילות <math>p\to q\equiv \lnot q\to \lnot p</math>. עבור: אייל לא שמח וענת גבוהה, נקבל בא' אמת ובב' שקר.
 
 
===הכרחי ומספיק ====
הערה (טרמינולוגיה):
*כאשר אומרים ש B הוא תנאי הכרחי ל A פירושו הוא שהפסוק <math>A \to B</math> נכון. לעיתים, לצורך הדגשה מסמנים <math>A \Rightarrow B</math>
*כאשר אומרים ש B הוא תנאי מספיק ל A פירושו הוא שהפסוק <math>B \to A</math> נכון. לעיתים, לצורך הדגשה מסמנים <math>B \Rightarrow A</math>
*כאשר אומרים ש B הוא תנאי הכרחי ומספיק ל A פירושו הוא שהפסוק <math>B \rightarrow A</math> נכון. לעיתים, לצורך הדגשה מסמנים <math>A \iff B</math>
====תרגיל====
השלם את המשפט הבא: כדי שירד גשם _____ שיהיו עננים בשמים. לכן אם נסמן ע"י "יש עננים בשמים = A", "יורד גשם = B" נקבל "A____B".
 
פיתרון: הכרחי, <math>\Leftarrow </math>
 
====תרגיל====
השלם את המשפט הבא: מנה ראשונה טעימה היא תנאי _____ לשבח את הטבח. לכן אם נסמן ע"י "מנה ראשונה טעימה = A", "שבחים לטבח = B" נקבל "A____B".
 
פיתרון: מספיק, <math>\Rightarrow </math>
===טענת גרירה===
ניתן להסיק: אם אני מנגן בפסנתר אני לא מנגן בתופים.
פתרון: נכון, זה לא תלוי במי זה "אני" (במילים אחרות הפסוק "(מסקנה)<math>\to</math>(נתונים)" הוא טאוטולוגיה ולא מושפע מערכי האמת של האטומים שלו). בהינתן א+ב אנו רוצים להוכיח את המסקנה, שהיא בעצמה טענת גרירה. לכן: נניח שמנגן בפסנתר, לכן לפי ב מנגן בחצוצרה. ואז לפי א יוצא שלא מנגן בתופים או לא מנגן בפסנתר (דה-מורגן). כיון שנתון שאני מנגן שמנגן בפסנתר מתחייב שלא בתופים. ===הכרחי ומספיק ===הערה (טרמינולוגיה):*כאשר אומרים ש B הוא תנאי הכרחי ל A פירושו הוא שהפסוק <math>A \to B</math> נכון. לעיתים, לצורך הדגשה מסמנים <math>A \Rightarrow B</math>*כאשר אומרים ש B הוא תנאי מספיק ל A פירושו הוא שהפסוק <math>B \to A</math> נכון. לעיתים, לצורך הדגשה מסמנים <math>B \Rightarrow A</math>*כאשר אומרים ש B הוא תנאי הכרחי ומספיק ל A פירושו הוא שהפסוק <math>B \rightarrow A</math> נכון. לעיתים, לצורך הדגשה מסמנים <math>A \iff B</math>====תרגיל====השלם את המשפט הבא: כדי שירד גשם _____ שיהיו עננים בשמים. לכן אם נסמן ע"י "יש עננים בשמים = A", "יורד גשם = B" נקבל "A____B". פיתרון: הכרחי, <math>\Leftarrow </math> ====תרגיל====השלם את המשפט הבא: כניסת המורה לכיתה הוא תנאי _____ שיהיה שקט בכיתה. לכן אם נסמן ע"י "כניסת המורה= A", "שקט בכיתה = B" נקבל "A____B". פיתרון: מספיק, <math>\Rightarrow </math> ===תרגיל===(a) כדי שלזכות בלוטו _____ למלא כרטיס לוטו. (b) כדי שהיה שקט בכיתה _____ ללחוץ mute all (c) לקבל ציון עם 3ספרות בקורס _____ לקבל 100 בקורס.
==דרכי הוכחה==
נשים לב כי בשביל לקבוע אם הפסוק <math>\forall x P(x)</math> אנחנו צריכים לדעת איזה x ים "חוקיים" (בהנחה שאנחנו יודעים את P) ומכאן שנעבור להגדרות הבאות.
===הגדרות הקשורות לקבוצותתרגיל===ההגדרה האינטואיטיבית לקבוצה הינה הצרינו את הפסוקים (a) "אוסף של איבריםכל שתי נקודות שונות קובעות ישר".בקבוצה אין משמעות לסדר האיבריםבאמצעות הפרדיקט הדו-מקומי P(x, ואיבר אינו יכול להופיע פעמייםl) - x נמצא ב l כאשר המשתנה x הוא נקודה ו l הוא ישר. דוגמאות ל3 קבוצות  (קבוצות נוהגים לסמן בין 2 סוגריים מסולסלותb):"כל שתי נקודות שונות קובעות ישר אחד ויחיד"
<math>\{1,\mathrm{horse},3\}</math>, <math>\{1,2,3\}</math> ו<math>\{1,\{2,3\},\{\}\}</math>
איבר ה'''שייך''' לקבוצה אנו מסמנים בסימן <math>\in</math>. למשל <math>1\in\{1,2,3\}</math>, ואילו <math>4\notin\{1,2,3\}</math>. שימו לב שגם <math>1\notin\{\{1,2,3\}\}</math> שכן האיבר היחיד בקבוצה זו הינה הקבוצה <math>\{1,2,3\}</math>.
*אומרים שקבוצה A '''מוכלת''' בקבוצה B (מסומן <math>A \subseteq B</math>) אם כל האיברים בA הם גם איברים בB.
*'''חיתוך''' של שתי קבוצות A ו B הינו אוסף האיברים השייכים גם לA וגם לB (מסומן <math>A\cap B</math>).
*'''איחוד''' של שתי קבוצות A ו B הינו אוסף האיברים השייכים לA או לB (מסומן <math>A\cup B</math>).
*A '''הפרש''' B הינה הקבוצה המכילה את כל האיברים בA שאינם בB (מסומן A\B).
*'''ההפרש הסימטרי''' בין שתי קבוצות A וB הוא אוסף האיברים הנמצאים באחת הקבוצות אך לא בחיתוך (מסומן <math>A\Delta B</math>).
====תרגיל====
הצרן תנאי השקול לכך ש-a שייך לאיחוד של הקבוצות A וBנגדיר פרדיקט <math>R(x,z,y)</math> המביע כי <math>x<z<y</math>.
פתרון האם הפסוק <math>a\in A forall x\or aforall y \in Bexists z : (x<y)\to R(x,z,y)</math>אמיתי?
*הצרן תנאי השקול לכך ש-a אינו שייך לאיחוד של הקבוצות A וBפתרון: אם המשתנים מגיעים מהשלמים הפסוק שקרי (שהרי לא קיים z עבור x=1,y=2). אם המשתנים מגיעים מהרציונאלים הפסוק אמת (תכונה זאת נקראת צפיפות הרציונאלים). מסקנה: צריך לדעת מאיפה מגיעים משתני הפרדיקט. מה לא חשוב? לא חשוב שמות המשתנים. למשל <math>\forall x\forall y \exists z : (x<y)\to R(x,z,y)</math> זה פסוק זהה לפסוק <math>\forall m\forall n \exists k : (m<n)\to R(m,k,n)</math> חשוב גם הסדר, והכוונה לשני דברים:*הצרן תנאי השקול לכך ש-a שייך לחיתוך של הקבוצות A וBסדר הופעת הכמתים, למשל הפסוק <math>\forall x\exists z \forall y : (x<y)\to R(x,z,y)</math> הוא שקרי גם כשהמשתנים מגיעים מהרציונאלים (שהרי אפשר למצוא y שבין x לz)*הצרן תנאי השקול לכך ש-a אינו שייך לחיתוך של הקבוצות A וBסדר המשתנים בתוך הפרדיקט, למשל הפסוק <math>\forall x\forall y \exists z : (x<y)\to R(x,y,z)</math> נכון גם כשהמשתנים מגיעים מהשלמים.
הגדרה: קבוצה A מוכלת בקבוצה B אם בB נמצאים כל האיברים מA (למשל הטבעיים מוכלים בשלמים <math>\mathbb{N}\subseteq\mathbb{Z}</math>, והשלמים מוכלים בממשיים <math>\mathbb{Z}\subseteq\mathbb{R}</math>).
*הצרן תנאי השקול לכך ש-C מוכלת בחיתוך של A וB
פתרון: <math>\forall c [c\in C \rightarrow (c\in A \and c \in B)]</math>
*הצרן תנאי השקול לכך ש-C אינה מוכלת באיחוד של A וB
==== תרגיל ====
הוכח או הפרך (משתני הפרדיקט נלקחים מהטבעיים):
הערה: סדר הכמתים הוא חשוב (כמו בעברית) - לדוגמא: יש הבדל בין "לכל סיר קיים מכסה" לבין "קיים מכסה שמתאים לכל סיר".דוגמא: הצרן את המשפט "לכל מספר טבעי יש מספר טבעי הגדול ממנו" פתרון: <math>\forall n\in\mathbb{N}\,\exists m\in\mathbb{N}:n<m</math> לעומת זאת <math>\exists m\in\mathbb{N}\,\forall n\in\mathbb{N}:n<m</math> פירושו שקיים מספר טבעי שגדול מכל המספרים הטבעיים.
 
===תרגיל (בהרצאה)===
.3 נתונים 4 קלפים שבצד א יש מספר )בין 1 ל 10( ובצד ב יש צבע )ירוק או אדום(. אני טוען: "כל קלף שבצד א יש מספר זוגי הצד השני שלו ירוק".הצרינו את הפסוק בעזרת הפרדיקטים P(x) המביע "צד א של קלף x הוא זוגי" ו Q(x) המביע "צד ב של קלף x הוא ירוק". מה השלילה של הפסוק?בהיתן שרואים 2,3 ירוק ואדום. אילו קלפים הכרחי ומספיק להפוך כדי לוודא את נכונות הטענה.
====תרגיל====
הוכיחו או הפריכו:
דוגמאות של הצרנת ושלילת המושגים 'תלות לינארית', 'גבול סדרה', 'חח"ע', וכדומה
==צורות נורמליות: CNF ,DNF(אם רלוונטי לקורס שאתם לוקחים. אם לא שמעתם על הדברים האלה - תדלגו)== 
ישנן שתי "צורות נורמליות" להצגת '''כל''' פסוקית - DNF ו CNF.
באופן דומה נייצר <math>C_2,C_3,C_4,C_5</math> עבור שורות 2 , 5, 7 ו-8:
<math>C_2= \lnot x_1 \lor \lnot x_2 \lor \lnot x_3, C_3=\lnot x_1\lor \lnot x_2 \lor x_3</math>
<math> C_4=x_1 \lor \lnot x_2 \lor \lnot x_3, C_5= \lnot x_1 \lor \lnot x_2 \lor \lnot x_3</math>
עריכה אחד