שינויים

קפיצה אל: ניווט, חיפוש
/* הגדרות הקשורות לקבוצות */
(b) "כל שתי נקודות שונות קובעות ישר אחד ויחיד"
===הגדרות הקשורות לקבוצות===
[אפשר להסתדר בלי להיכנס לנושא הקבוצות ולכן כדאי לדלג על זה. תלמידים שזה היכרותם הראשונה עם החומר מבינים טוב מזה קבוצת השלמים גם בלי לפרט יותר מידי]
ההגדרה האינטואיטיבית לקבוצה הינה "אוסף של איברים".
בקבוצה אין משמעות לסדר האיברים, ואיבר אינו יכול להופיע פעמיים. דוגמאות ל3 קבוצות (קבוצות נוהגים לסמן בין 2 סוגריים מסולסלות):
 
<math>\{1,\mathrm{horse},3\}</math>, <math>\{1,2,3\}</math> ו<math>\{1,\{2,3\},\{\}\}</math>
 
איבר ה'''שייך''' לקבוצה אנו מסמנים בסימן <math>\in</math>. למשל <math>1\in\{1,2,3\}</math>, ואילו <math>4\notin\{1,2,3\}</math>. שימו לב שגם <math>1\notin\{\{1,2,3\}\}</math> שכן האיבר היחיד בקבוצה זו הינה הקבוצה <math>\{1,2,3\}</math>.
*אומרים שקבוצה A '''מוכלת''' בקבוצה B (מסומן <math>A \subseteq B</math>) אם כל האיברים בA הם גם איברים בB.
 
*'''חיתוך''' של שתי קבוצות A ו B הינו אוסף האיברים השייכים גם לA וגם לB (מסומן <math>A\cap B</math>).
*'''איחוד''' של שתי קבוצות A ו B הינו אוסף האיברים השייכים לA או לB (מסומן <math>A\cup B</math>).
*סדר המשתנים בתוך הפרדיקט, למשל הפסוק <math>\forall x\forall y \exists z : (x<y)\to R(x,y,z)</math> נכון גם כשהמשתנים מגיעים מהשלמים.
====תרגיל====
[אפשר לדלג בשיעור על לוגיקה, זה מתאים לתירגול בקבוצות] הצרן תנאי השקול לכך ש-a שייך לאיחוד של הקבוצות A וB
 
פתרון <math>a\in A \or a\in B</math>
 
*הצרן תנאי השקול לכך ש-a אינו שייך לאיחוד של הקבוצות A וB
*הצרן תנאי השקול לכך ש-a שייך לחיתוך של הקבוצות A וB
*הצרן תנאי השקול לכך ש-a אינו שייך לחיתוך של הקבוצות A וB
 
הגדרה: קבוצה A מוכלת בקבוצה B אם בB נמצאים כל האיברים מA (למשל הטבעיים מוכלים בשלמים <math>\mathbb{N}\subseteq\mathbb{Z}</math>, והשלמים מוכלים בממשיים <math>\mathbb{Z}\subseteq\mathbb{R}</math>).
*הצרן תנאי השקול לכך ש-C מוכלת בחיתוך של A וB
 
פתרון: <math>\forall c [c\in C \rightarrow (c\in A \and c \in B)]</math>
*הצרן תנאי השקול לכך ש-C אינה מוכלת באיחוד של A וB
==== תרגיל ====
2,232
עריכות