שינויים

/* תרגילים נוספים */
=תרגילים נוספים=
'''==תרגיל''': ==נניח כ בגרף מתקיים <math>\forall v\in V : \operatorname{degre}(v)\geq 2</math> אז בגרף יש מעגל.
'''פתרון''': נבחר <math>v_0\in V</math> ונצא ממנו לאחד משכניו. מפה נמשיך למסלול רנדומאלי כך שאם הולכים מ <math>v\to u</math> הצעד הבא לא יהיה <math>u\to v</math> (זה אפשרי כי כל קדקוד יש לפחות 2 שכנים אז אם נכנסים אליו משכן א ניתן לצאת משכן ב). כיוון שיש מספר סופי של קדקודים נקבל חזרה על קדקוד כלשהו בשלב כלשהו. בפעם הראשונה שנקבל חזרה קיבלנו מעגל!
'''==תרגיל''': ==יהי <math>G=(V,E)</math> גרף בעל <math>n\ge 3</math> קדקודים. ו-<math>m \ge n </math> צלעות. אזי בגרף יש מעגל.
'''פתרון''': באינדוקציה.
''אפשרות 2'': לכל קדקוד דרגה גדולה שווה 2. ולפי תרגיל קודם יש מעגל
'''==תרגיל''': ==יהי <math>G</math> גרף מסדר <math>n>1</math>. הוכח שקיימים 2 קדקודים בעלי אותה דרגה.
'''פתרון:''' נביט בפונקציית הדרגה <math>\operatorname{deg}:V \to \{0,1,\dots,n-1\}</math> השולחת כל איבר אל הדרגה שלו: <math>v\mapsto \operatorname{deg}(v)</math>; כדי להבין את התמונה של הפונקציה, נשים לב שיש שני מקרים:
'''==תרגיל''': ==יהיה <math>G=(V,E)</math> גרף פשוט עם 100 קדקודים כך שדרגת כל קדקוד לפחות 50. הוכח כי <math>G</math> קשיר.
'''פתרון''': יהיו <math>v,u\in V</math>. צריך להוכיח כי <math>[v]=[u]</math> (כך נסמן את רכיב הקשירות).
'''==תרגיל''': ==יהי <math>G=(V,E)</math> גרף ללא מעגלים עם <math>|V|\geq 2</math>. הוכח כי קיימים <math>v_1,v_2\in V</math> כך שדרגתם לכל היותר 1.
'''פתרון''': לפי תרגיל קודם קיים <math>v\in V</math> כך שדרגתו לכל היותר 1 (אחרת לכל הקדקודים יש דרגה לפחות 2 ואז יש מעגל לפי תרגיל קודם).
בכל מקרה קיבלנו כי קיימים 2 קדקודים בעלי דרגה 1 לכל היותר!
'''==תרגיל''': ==הוכח/הפרך:
# אם מתקיים <math>\forall v \in V: \operatorname{deg}(v)\ge2</math>, אז <math>G</math> קשיר.
# קיים גרף בין שישה קדקודים 1,2,3,4,4,5.
2,232
עריכות