שינויים

קפיצה אל: ניווט, חיפוש
/* פונקציות הפיכות */
===פונקציות הפיכות===
'''הגדרה:''' תהי <math>f</math> פונקציה <math>f:A\rightarrow B</math>. פונקציה <math>g:B\rightarrow A</math> תיקרא '''הפונקציה ההופכית ל-<math>f</math>''' אם <math>f\circ g = id_B</math> וגם <math>g\circ f = id_A</math>. במקרה זה נסמן את <math>g</math> על ידי <math>f^{-1}</math>, ונאמר שהפונקציה <math>f</math> היא '''הפיכה'''.
הערה: זכרו שפונקציה היא יחס. הפונקציה ההופכית שלה היא היחס ההופכי מטבע הדברים. על מנת שהיחס ההופכי יהיה פונקציה הוא צריך להיות ח"ע ושהתחום שלו יהיה כל B. תנאים אלה מתממשים רק אם f הינה חח"ע ועל.
'''הוכחה:'''
אם f הפיכה, אזי <math>f\circ f^{-1} = id_B</math> וגם <math>f^{-1}\circ f = id_A</math>. מכיוון שהזהות הינה חח"ע ועל, נובע שf ש-f חח"ע ועל לפי התרגיל הקודםבדבר הרכבת פונקציות.
אם f חח"ע ועל, אז נגדיר <math>g:B\to A</math> ע"י: עבור <math>a\in A </math> קיים (כי f על) יחיד (כי f חח"ע)
<math>b\in B</math> כך ש <math>f(a)=b</math> . נגדיר <math>g(b):=a</math>. תרגיל: בדקו ש g ההפוכית ההופכית של f.
יחידות: נניח g,h הופכיות של f אזי <math>h= h\circ I_B=h\circ f \circ g=I_A \circ g=g</math>. דרך אחרת להוכחת יחידות: נניח בשלילה ש g וh הופכיות שונות של f. מכיוון שהן שונות, הן חייבות להיות שונות על איבר אחד לפחות. כלומר, <math>\exists a\in A:g(a)\neq h(a)</math>. אבל <math>f(g(a))=f(h(a))</math> וזו סתירה לחח"ע של f.
233
עריכות