שינויים

88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 4

נוספו 1,664 בתים, 16:16, 2 באוגוסט 2011
/* פונקציות */
דוגמא נגדית ל g: נביט בפונקציות מהטבעיים לטבעיים. <math>g(n)=2n</math>, והפונקציה f מוגדרת כ <math>f(2n)=n</math> ו <math>f(2n+1)=n</math>. ההרכבה הינה פונקצית הזהות שהיא בפרט על, אבל g אינה על כיוון שהאי זוגיים כלל לא נמצאים בתמונה שלה.
 
 
'''הגדרה:''' פונקצית הזהות על A הינה פונקציה מA לעצמו השולחת כל איבר לעצמו. נהוג לסמנה ב<math>id_A</math>. פונקציה <math>f:A\rightarrow B</math> נקראת הפיכה אם קיימת לה הופכית - פונקציה <math>f^{-1}:B\rightarrow A</math> כך שמתקיים <math>f\circ f^{-1} = id_B</math> וגם <math>f^{-1}\circ f = id_A</math>.
 
הערה: זכרו שפונקציה היא יחס. הפונקציה ההופכית שלה היא היחס ההופכי מטבע הדברים. על מנת שהיחס ההופכי יהיה פונקציה הוא צריך להיות ח"ע ושהתחום שלו יהיה כל B. תנאים אלה מתממשים רק אם f הינה חח"ע ועל.
 
'''תרגיל.'''
 
הוכח כי f הפיכה אם"ם היא חח"ע ועל. כמו כן, הוכח שאם קיימת הופכית אזי היא יחידה.
 
'''הוכחה:'''
 
אם f הפיכה, אזי <math>f\circ f^{-1} = id_B</math> וגם <math>f^{-1}\circ f = id_A</math>. מכיוון שהזהות הינה חח"ע ועל, נובע שf חח"ע ועל לפי התרגיל הקודם.
 
אם f חח"ע ועל, אז היחס ההופכי שלה ח"ע ומוגדר והוא מהווה פונקציה הופכית. (אמנם החסרנו את רוב ההוכחה, אך היא פשוטה למדי.)
 
נניח בשלילה ש g וh הופכיות שונות של f. מכיוון שהן שונות, הן חייבות להיות שונות על איבר אחד לפחות. כלומר, <math>\exists a\in A:g(a)\neq h(a)</math>. אבל <math>f(g(a))=f(h(a))</math> וזו סתירה לחח"ע של f.