שינויים

קפיצה אל: ניווט, חיפוש
/* פונקציות */
נניח <math>g \circ f</math> על. נסמן <math>g \circ f : A\rightarrow B</math> אזי לכל איבר <math>b\in B</math> קיים איבר <math>a\in A</math> כך ש <math>g(f(a))=b</math>. לכן עבור g לכל b קיים <math>f(a)</math> שנותן את b תחת g ולכן g על.
דוגמא נגדית ל f: נתבונן בשתי הפונקציות מהטבעיים לעצמם<math>f(n)=n+1</math><math>\forall n\not=0 g(n)=n-1, g(0)=0</math>ההרכבה היא הזהות (עוד דוגמא נביט בפונקציות מהטבעיים לטבעיים. <math>f(n)=2n</math>, והפונקציה g מוגדרת כ <math>g(2n)=n</math> ו <math>g(2n+1)=n</math>. ההרכבה הינה פונקצית הזהות שהיא בפרט על, אבל f אינה על כיוון שהאי זוגיים כלל לא נמצאים בתמונה שלה.)
הערה: זכרו שפונקציה היא יחס. הפונקציה ההופכית שלה היא היחס ההופכי מטבע הדברים. על מנת שהיחס ההופכי יהיה פונקציה הוא צריך להיות ח"ע ושהתחום שלו יהיה כל B. תנאים אלה מתממשים רק אם f הינה חח"ע ועל.
 
'''תרגיל.'''
 
הוכח כי f הפיכה אם"ם היא חח"ע ועל. כמו כן, הוכח שאם קיימת הופכית אזי היא יחידה.
 
'''הוכחה:'''
 
אם f הפיכה, אזי <math>f\circ f^{-1} = id_B</math> וגם <math>f^{-1}\circ f = id_A</math>. מכיוון שהזהות הינה חח"ע ועל, נובע שf חח"ע ועל לפי התרגיל הקודם.
 
אם f חח"ע ועל, אז נגדיר <math>g:B\to A</math> ע"י: עבור <math>a\in A </math> קיים (כי f על) יחיד (כי f חח"ע)
<math>b\in B</math> כך ש <math>f(a)=b</math> . נגדיר <math>g(b):=a</math>. תרגיל: בדקו ש g ההפוכית של f.
 
יחידות: נניח g,h הופכיות של f אזי <math>h= h\circ I_B=h\circ f \circ g=I_A \circ g=g</math>
נניח בשלילה ש g וh הופכיות שונות של f. מכיוון שהן שונות, הן חייבות להיות שונות על איבר אחד לפחות. כלומר, <math>\exists a\in A:g(a)\neq h(a)</math>. אבל <math>f(g(a))=f(h(a))</math> וזו סתירה לחח"ע של f.
2,232
עריכות