שינויים

קפיצה אל: ניווט, חיפוש
/* הוכחה */
==== הוכחה====
'''===== באמצעות אקסיומת הבחירה''' =====נציג את A כאיחוד אוסף המקורות של כל התמונות של הפונקציה <math>A=\bigcup_{b\in im(f)}f^{-1}\Big[\{b\}\Big]</math>. לפי אקסיומת הבחירה ניתן לבנות פונקציה
<math>g:\Big\{f^{-1}\Big[\{b\}\Big]:b\in im(f)\Big\}\rightarrow A</math> השולחת כל קבוצת מקורות לנציג כלשהו שלה.
נוכיח כי <math>h:=f|_{im(g)}</math> הינה חח"ע והתמונה שלה שווה לזו של f. נניח <math>h(a)=h(b)</math> לכן <math>a,b\in f^{-1}\Big[\{h(a)\}\Big]</math> אבל כל מקור של תמונה נשלח לנציג '''יחיד''' על ידי g אחרת זו סתירה לחד ערכיות ולכך ש-g הינה פונקציה. כמו כן, מכיוון שמכל מקור נבחר נציג, כל התמונה של f מתקבלת.
 '''===== באמצעות הלמה של צורן'''. =====נביט באוסף תתי הקבוצות של A כך שהצמצום של f עליהן חח"ע. (האוסף לא ריק כי תמיד אפשר להצטמצם לקבוצה הריקה)
ט: תהא <math>\{B_i\}_{i\in I}</math> שרשרת כלשהיא של קבוצת שהצמצום של f עליהם חח"ע אזי הצמצום של f על <math>B:=\bigcup_{i\in I}B_i</math> ג"כ חח"ע
ואז <math>B\cup \{x\}</math> קבוצה שמכילה ממש את <math>B</math> והצמצום של f עליה חח"ע. סתירה.
'''=====באמצעות עקרון המקסימום של האוסדורף'''=====נגדיר <math>\smiley</math> להיות
===תרגיל ממבחן תשס"ט מועד א' (ד"ר שי סרוסי וד"ר אלי בגנו)===
2,232
עריכות