שינויים

קפיצה אל: ניווט, חיפוש
/* תרגיל */
סעיף ב. נוכיח במספר דרכים: ===== לפי הלמה של צורן =====<math>A</math>נביט באוסף כל האוספים של תתי קבוצות זרות של B שכל אחת מהן מעוצמה a. (האוסף לא ריק לפי סעיף קודם)
תהא <math>\{B_i\}_{i\in I}</math> שרשרת של קבוצות כך שכל אחת <math>B_i\in P(P(A)) </math> אוסף של תתי קבוצות זרות של B מעוצמה a.
אם העוצמה שלה קטנה מ a אז נוכל לצרף אותה לאחת מהקבוצות ב<math>S</math> ואז נקבל אוסף של קבוצות מעוצמה a שאיחודם שווה B.
===== לפי עקרון המקסימום של האוסדורף =====
נגדיר <math>\mathcal{O}</math> קבוצת כל האוספים של תתי קבוצות זרות של B שכל אחת מהן מעוצמה a. בקס"ח <math>\mathcal{O}</math> עם הכלה מתקיים כי <math>\{\{A\}\}</math> היא שרשרת כאשר A היא תת קבוצה של B מעוצמה a שקיימת לפי סעיף א. כעת לפי עקרון המקסימום, קיימת שרשרת C מקסימאלית. נגדיר <math>T=\cup_{T'\in C}T'</math>
 
ט: <math>T\in \mathcal{O}</math>
 
ה: יהיו <math>A_1,A_2\in T</math> אזי קיימות <math>T'_1,T'_2</math> כך ש <math>A_i\in T'_i</math> ומכיוון ש C שרשרת <math>T'_1\subseteq T'_2</math> או להיפך. נניח בה"כ כי <math>T'_1\subseteq T'_2</math> ולכן <math>A_1,A_2\in T'_2</math> ומכיוון ש <math>T'_2\in \mathcal{C}</math> נקבל כי <math>A_1,A_2</math> זרות ומעוצמה a כנדרש
 
כעת נגדיר <math>B'=\cup_{A'\in T}A'</math> ונגדיר <math>\hat{B}=B\setminus B'</math> .
 
אם <math>a<|\hat{B}|</math> אז לפי סעיף א' קיימת לה תת קבוצה <math>\hat{A}</math> מעוצמה a. לפי הגדרה <math>\hat{B}</math> מתקיים כי <math>\hat{A}</math> זרה לכל קבוצה ב T ולכן <math>T\cup \{\hat{A}\}\in \mathcal{O}</math> ואם נוסיף אותה ל C נקבל שרשרת שמכילה ממש את C בסתירה למקסימאליות של C.
 
לכן <math>|\hat{B}|\leq a</math> ונבחר קבוצה אחת A ששייכת T (קיימת לפי סעיף א) ונחליף אותה ב <math>A\cup\{\hat{B}\}</math>. מכיוון ש a עוצמה אינסופית נקבל כי <math>A\cup\{\hat{B}\}</math> מעוצמה a גם כן (בצירוף <math>|\hat{B}|\leq a</math>) וקיבלנו כעת קבוצות זרות שכל אחת מעוצמה a שהאיחוד של כולם שווה ל B כנדרש
===תרגיל===
2,232
עריכות