שינויים

89-214 סמסטר א' תשעב/תקצירים

נוספו 83 בתים, 23:02, 4 בפברואר 2012
/* הרצאה שתים-עשרה */
* [[89-214 סמסטר א' תשעא/תקצירים|תקצירי ההרצאות מהשנה שעברה]].
* [[89-214 סמסטר א' תשעב|חזרה לדף הראשי של תשע"ב]]
== הרצאה ראשונה==
כל תת-חבורה של <math>\ \mathbb{Z}_n</math> נוצרת על-ידי איבר המחלק את n; אם a|n, אז הסדר של החבורה הנוצרת על-ידי a הוא n/a, ולכן, אם H תת-חבורה של <math>\ \mathbb{Z}_n</math> מסדר d, היא שווה לחבורה הציקלית <n/d>. כלומר, לחבורות ציקליות יש תת-חבורה יחידה מכל סדר שמשפט לגרנז' מתיר.
מגדירים את המכפלה של תת-חבורות כקבוצה של כל המכפלות האפשריות: <math>\ AB=\{ab | a\in A, b\in B\}$</math>. באופן דומה אפשר להגדיר, לכל קבוצה בחבורה, <math>\ S^{-1}=\{s^{-1} | s\in S\}</math>. הוכחנו שאם A,B תת-חבורות, אז המכפלה AB תת-חבורה אם ורק אם AB=BA.
הגדרנו '''הומומורפיזם''' (העתקה מחבורה G לחבורה H, השומרת על הכפל (ולכן גם על איבר היחידה ועל פעולת ההיפוך)). התמונה של הומומורפיזם היא תת-חבורה של H, והגרעין הוא תת-חבורה של G. הומומורפיזם הוא חד-חד-ערכי אם ורק אם הגרעין שלו טריוויאלי. ראינו שכל תת-חבורה יכולה להיות תמונה של הומומורפיזם כלשהו. מאידך, לא כל תת-חבורה יכולה להיות גרעין של הומומורפיזם: לתת-חבורות כאלה נקרא בשעור הבא "תת-חבורות נורמליות", ובינתיים אנו מגדירים אותן על-פי התכונה <math>\ aH=Ha</math> לכל a, ותכונות השקולות לה.
המשפט המרכזי על חבורות-p אבליות קובע שאם H תת-חבורה ציקלית של A שסדרה שווה לאקספוננט של A (ותמיד קיימת כזו), אז A מתפרקת למכפלה ישרה של H ותת-חבורה נוספת. מכאן נובע, באינדוקציה, שכל חבורת-p אבלית היא מכפלה ישרה של חבורות ציקליות. בשילוב עם התוצאה הקודמת, קיבלנו שכל חבורה אבלית סופית היא מכפלה ישרה של חבורות ציקליות.
התאוריה של חבורות אבליות סופיות מסוכמת ב'''משפט''' הבא: כל חבורה אבלית סופית אפשר להציג באופן יחיד בצורה <math>\ \mathbb{Z}_{d_1} \times \cdots \times \mathbb{Z}_{d_t}</math>, כאשר <math>\ d_1|\cdots | d_t</math>. את הקיום מוכיחים על-ידי קיבוץ מרכיבי-p הגדולים ביותר לכדי המרכיב האחרון, הגדולים ביותר מאלו שנותרו מרכיבים את המרכיב השני בגודלו, וכן הלאה. את היחידות אפשר להוכיח על-ידי שמראים שאפשר לחשב את <math>\ d_1</math> מתוך החבורה. אכן, מספר הגורמים t הוא הערך המקסימלי שהפונקציה <math>\ f(p) = \log_p|A/pA|</math> מקבלת; ובנוסף לזה, <math>\ |p^{\ell-1}A/p^\ell A| = p^t</math> אם ורק אם <math>\ p^\ell | d_1</math>. מובן שמחזקות הראשוניים המחלקות את המספר אפשר לשחזר אותו באופן מלא. (בכתה הראינו שיטה אחרת - ראו תרגיל 10.6.5 בחוברת).
== שדות סופיים - גרסה נטולת חוגים ==
המשפט העיקרי שנוכיח בהמשך הוא שלכל חזקת ראשוני q, '''קיים''' שדה מסדר q. למען האמת השדה הזה הוא יחיד (ונקרא "שדה גלואה מסדר q"), אבל לא נוכל להוכיח זאת כאן.
5. '''חוג הפולינומים''' (בלי להגדיר "חוג"). אם F שדה, אוסף הפולינומים במשתנה אחד מעליו, עם פעולות החיבור והכפל הטבעיות של פולינומים, נקרא '''חוג הפולינומים''' מעל F, ומסמנים אותו בסימון <math>\ F[x]</math> (או <math>\ F[y]</math>; שם המשתנה אינו חשוב). כמו במספרים השלמים, פולינום f מחלק פולינום g אם ורק אם קיים פולינום a כך ש-g=af.
כל איבר של <math>\ F[x]</math> נקרא "פולינום מעל F". אם <math>\ F \subset K</math> תת-שדה, אז יש הכלה טבעית <math>\ F[x] \subset K[x]</math>, ולכן כל פולינום מעל F הוא באופן אוטומטי גם פולינום מעל K.
6. '''המעלה'''. המעלה היא פונקציה <math>\ F[x]\rightarrow \mathbb{N}\cup \{-\infty\}</math>, המוגדרת לפי החזקה העליונה הנוכחת בפולינום. פולינום ממעלה אפס נקרא '''סקלר'''. פונקציית המעלה מקיימת: <math>\ \deg(fg) = \deg(f)+\deg(g)</math> ו- <math>\ \deg(f+g) \leq \max\{\deg(f),\deg(g)\}</math>.