תרגול 6 תשעז

מתוך Math-Wiki
גרסה מ־08:06, 7 בדצמבר 2016 מאת אמונה77 (שיחה | תרומות) (יצירת דף עם התוכן "===תרגיל=== נתון <math>A=\{\phi\}</math> ונתון <math>B=\{\phi,\{\phi\}\}</math>. סמן את הביטויים הנכונים: #<math>\phi\subseteq...")

(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)
קפיצה אל: ניווט, חיפוש

תרגיל

נתון A=\{\phi\} ונתון B=\{\phi,\{\phi\}\}. סמן את הביטויים הנכונים:

  1. \phi\subseteq B (כן)
  2. \phi\in \phi (לא)
  3. \phi \subseteq \phi (כן)
  4. A\subseteq B (כן)
  5. A\in B (כן)
  6. A\cup B = B (כן)
  7. A\cap B=\phi (לא)

תרגיל

הוכח כי A\cap (B/C)=(A\cap B) / (A\cap C)

פתרון

דרך גרירות לוגיות:

x\in A\cap (B/C)\iff (x\in A) \and [(x\in B) \and (x\notin C)]\iff [(x\in A) \and (x\in B) \and (x\notin C)] \or [(x\in A) \and (x\in B) \and (x\notin A)]


בצד הימני הוספנו סתירה בעזרת הקשר "או" ולכן נשארנו עם ביטוי שקול. כעת נשתמש בחוק הפילוג של הלוגיקה:


\iff [(x\in A) \and (x\in B)]\and [(x\notin C)\or(x\notin A)]\iff [(x\in A) \and (x\in B)]\and \neg [(x\in C)\and(x\in A)]


וזה בדיוק מה שרצינו.


דרך הכלה דו כיוונית:

(\subseteq) נניח x\in A\cap(B\backslash C) אזי

x\in A \land x\in B \land x\not\in C \Leftarrow x\in A\cap B \land x\not\in A\cap C \Leftarrow x\in (A\cap B) \backslash (A\cap C)

(\supseteq) נניח x\in (A\cap B) \backslash (A\cap C) אזי

x\in A\cap B \land x\not\in A\cap C \Leftarrow x\in A \land x\in B \land x\not\in C \Leftarrow (כי אם x\in C אזי x\in A\cap C סתירה) x\in A\cap(B\backslash  C)\Leftarrow

תרגיל

נתונות A=\{2m+1:m\in\mathbb{Z}\}, ו B=\{2m+3:m\in\mathbb{Z}\}. הוכח שA=B.

פתרון

נוכיח הכלה דו כיוונית. נניח x\in A לכן קיים מספר שלם m כך ש x=2m+1. קל לראות שמתקיים x=2(m-1)+3 אבל אז מכיוון ש m-1 הינו מספר שלם מתקיים x\in B כפי שרצינו.

ההכלה בכיוון ההפוך דומה.

משלים

הגדרה: תהי קבוצה U, ונביט בתת קבוצה שלה A. ניתן להגדיר את המשלים של A כאוסף האיברים בU שאינם בA (כלומר ההפרש U\setminus A), מסומן A^c. לא ניתן לדבר על משלים אוניברסאלי ללא U מכיוון שאין קבוצה המכילה את כל הדברים בעולם (אחרת נגיע לסתירות כמו פרדוקס ראסל).

תכונות בסיסיות:

  • A\cup A^c = U
  • \emptyset^c = U
  • U^c = \emptyset
  • (A^c)^c = A

על המשלימים מתקיימים חוקי דה מורגן (הנובעים ישירות מחוקי דה מורגן בלוגיקה):

  • (A\cap B)^c = A^c \cup B^c
  • (A\cup B)^c = A^c \cap B^c

הערה: באופן כללי מתקיים

  • (\cap _{i\in I} A_i)^c = \cup _{i\in I} A_{i}^c
  • (\cup _{i\in I} A_i)^c = \cap _{i\in I} A_{i}^c


הגדרה: תהי קבוצה A. נגדיר את קבוצת החזקה של A בתור אוסף כל תתי הקבוצות של A. מסומן P(A)=\{X:X\subseteq A\}

דוגמא:

A=\{1,2\} אזי P(A)=\{\{\},\{1\},\{2\},\{1,2\}\}.

האם אתם יכולים למנות כמה איברים יש בקבוצת החזקה?

תרגיל ממבחן

יהיו A,B,C קבוצות. הוכיחו/הפריכו:

א. אם A \not\subseteq B \cap C אזי (A/B)\cap(A/C)\neq \phi

ב. אם A\subseteq B אזי A\cup(B/A)=B

ג. אם A\cap B=\phi אזי P(A)\cap P(B) = \{\phi\}


פתרון

א. הפרכה: A=\{1,2\},B=\{1\},C=\{2\}. אזי ברור שA איננה מוכלת בחיתוך של B וC אבל (A/B)\cap(A/C)=\{2\}\cap\{1\}=\phi


ב. נתון שלכל a\in A מתקיים a \in B. אזי x\in [A\cup(B/A)] \iff (x\in A) \or [(x\in B)\and (x\notin A)] \iff [(x\in A) \or (x\in B)] \and [(x \in A)\or (x\notin A)]


כעת, הצד הימני הוא טאוטולוגיה וניתן להסיר אותו. מכיוון שנתון (x\in A)\rightarrow (x\in B) ניתן להסיק בקלות ש(x\in A)\or (x\in B) \iff (x\in B) כפי שרצינו.

דרך נוספת: נגדיר את B להיות הקבוצה האוניברסאלית U:=B ואז צריך להוכיח כי A\cap A^c =U וזה אכן נכון!


ג. נניח בשלילה שP(A)\cap P(B)\neq \{\phi\}. מכיוון שהקבוצה הריקה שייכת לכל קבוצת חזקה החיתוך אינו ריק. לכן לפי הנחת השלילה קיימת קבוצה לא ריקה \phi \not=C השייכת לחיתוך P(A)\cap P(B). קבוצות החזקה הן אוסף תתי הקבוצות, ולכן C\subseteq A \and C\subseteq B. מכיוון שC אינה ריקה קיים בה איבר \exists c\in C וקל מאד לראות ש(c\in A)\and (c\in B) ולכן c מוכל בחיתוך בסתירה לכך שהחיתוך ריק.