אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית

מתוך Math-Wiki


סרטונים[עריכה]

  • הורדת דרגת המונה ע"י חילוק פולינומים


  • פירוק לשברים חלקיים


  • חישוב אינטגרל של כל שבר חלקי
    • נסמן [math]\displaystyle{ I_n=\int \frac{1}{(1+t^2)^n} dt }[/math]
    • אזי [math]\displaystyle{ I_{n+1}=\frac{t}{2n(1+t^2)^n} + \left(1-\frac{1}{2n}\right)I_n }[/math]

כאשר תנאי ההתחלה הוא [math]\displaystyle{ I_1=\arctan(t) }[/math]

אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית[עריכה]

תהי פונקציה מהצורה [math]\displaystyle{ f(x)=\frac{p(x)}{q(x)} }[/math] כאשר [math]\displaystyle{ p,q }[/math] פולינומים. נתאר אלגוריתם לחישוב [math]\displaystyle{ \int f(x)dx }[/math] .

עובדה. כל פולינום אפשר לפרק מעל הממשיים לגורמים ממעלה 1 ו-2 (עובדה זו נובעת מכך ששדה המספרים הממשיים הוא שדה סגור ממשית.

איננו מטפלים כאן בבעיה האלגוריתמית של פירוק פולינום לגורמים), האלגוריתם מניח שאנו יודעים את הפירוק של המכנה.

סקירה כללית[עריכה]

האלגוריתם מורכב משלושה שלבים:

  • שלב ראשון - אם הפולינום במונה מדרגה גדולה או שווה לפולינום במכנה, נבצע חילוק פולינומים.
  • שלב שני - נניח שהפולינום במונה מדרגה קטנה ממש מהפולינום במכנה. נפרק את הפונקציה הרציונאלית לשברים חלקיים.
  • שלב שלוש - נחשב את האינטגרל של כל שבר חלקי.


שלב ראשון[עריכה]

לאחר ביצוע חילוק פולינומים נקבל [math]\displaystyle{ p(x)=h(x)q(x)+r(x) }[/math] ולכן [math]\displaystyle{ \frac{p(x)}{q(x)}=h(x)+\frac{r(x)}{q(x)} }[/math].

האינטגרל על [math]\displaystyle{ h(x) }[/math] הוא אינטגרל מיידי על פולינום, ונותרנו עם האינטגרל על הפונקציה הרציונאלית [math]\displaystyle{ \frac{r(x)}{q(x)} }[/math] בה המונה מדרגה קטנה ממש מאשר המכנה.

שלב שני[עריכה]

כעת אנו מניחים שהמונה מדרגה קטנה ממש מהמכנה.

נפרק את [math]\displaystyle{ q }[/math] לגורמים אי-פריקים:

[math]\displaystyle{ q(x)=(x-a_1)^{n_1}\cdots(x-a_k)^{n_k}\cdot(x^2+c_1x+b_1)^{m_1}\cdots(x^2+c_jx+b_j)^{m_j} }[/math]

כעת, נפרק את הפונקציה הרציונאלית לשברים חלקיים:

[math]\displaystyle{ \frac{p}{q}=\Big[\frac{A_{1,1}}{x-a_1}+\frac{A_{1,2}}{(x-a_1)^2}+\cdots+\frac{A_{1,n_1}}{(x-a_1)^{n_1}}\Big]+\cdots+ \Big[\frac{A_{k,1}}{x-a_k}+\frac{A_{k,2}}{(x-a_k)^2}+\cdots+\frac{A_{k,n_k}}{(x-a_k)^{n_k}}\Big]+ }[/math]
[math]\displaystyle{ +\Big[\frac{B_{1,1}x+C_{1,1}}{x^2+c_1x+b_1}+\frac{B_{1,2}x+C_{1,2}}{(x^2+c_1x+b_1)^2}+\cdots+\frac{B_{1,m_1}x+C_{1,m_1}}{(x^2+c_1x+b_1)^{m_1}}\Big]+\cdots }[/math]

נעשה מכנה משותף ונשווה בין הפולינום שנקבל במונה לפולינום [math]\displaystyle{ p }[/math] , מקדם מקדם. נקבל מערכת משוואות ממנה נחשב את הקבועים [math]\displaystyle{ A_{i,j},B_{i,j},C_{i,j} }[/math] .


שלב שלישי[עריכה]

נחשב את האינטגרל של כל שבר חלקי.

אינטגרל מהצורה [math]\displaystyle{ I_m=\int\frac{A}{(x-a)^m} }[/math][עריכה]

נבצע הצבה [math]\displaystyle{ t=x-a }[/math] על-מנת לקבל:

[math]\displaystyle{ I_1=A\ln(x-a)+C }[/math]
[math]\displaystyle{ I_m=\frac{-A}{(m-1)(x-a)^{m-1}}+C }[/math]

אינטגרל מהצורה [math]\displaystyle{ I_m=\int\frac{A}{(x^2+bx+c)^m} }[/math] (כאשר המכנה אי-פריק)[עריכה]

נבצע השלמה לריבוע על-מנת לקבל את האינטגרל [math]\displaystyle{ I_m=\int\frac{A}{\left(\left[x+\frac{b}{2}\right]^2+\left[c-\left(\frac{b}{2}\right)^2\right]\right)^m} }[/math]

כעת, בעזרת הצבה לינארית פשוטה נעבור לאינטגרל מהצורה [math]\displaystyle{ G_m=\int\frac{A}{(x^2+a^2)^m} }[/math]

נעזר בנוסחא הרקורסיבית הבאה: [math]\displaystyle{ G_1=\int\frac{1}{x^2+a^2}dx=\frac{A}{a^2}\arctan\left(\tfrac{x}{a}\right)+C }[/math]

[math]\displaystyle{ G_{m+1}=\frac{2m-1}{2ma^2}\cdot G_m+\frac{A}{2ma^2}\cdot\frac{x}{(x^2+a^2)^m} }[/math]

אינטגרל מהצורה [math]\displaystyle{ I_m=\int\frac{Bx+C}{(x^2+bx+c)^m} }[/math] (כאשר המכנה אי-פריק)[עריכה]

דבר ראשון נצמצם את הבעיה לאינטגרל מהצורה [math]\displaystyle{ I_m=\int\frac{A(2x+b)+B}{(x^2+bx+c)^m} }[/math]

את החלק [math]\displaystyle{ I_m=\int\frac{B}{(x^2+bx+c)^m} }[/math] פותרים לפי הנוסחא לעיל

לחלק הנותר נבצע הצבה [math]\displaystyle{ t=x^2+bx+c }[/math] לקבל אינטגרל פתיר מהצורה [math]\displaystyle{ I_m=\int\frac{A}{t^m} }[/math]


דוגמאות[עריכה]

דוגמא 1 - המנעות משימוש באלגוריתם[עריכה]

[math]\displaystyle{ \int\frac{x^7}{(1-x^4)^2}dx }[/math]

בדוגמא זו ניתן להפעיל את האלגוריתם אך עדיף לבצע את ההצבה [math]\displaystyle{ t=1-x^4 }[/math] ולקבל

[math]\displaystyle{ \int\frac{x^7}{(1-x^4)^2}dx=\int\frac{1-t}{-4t^2}dt }[/math]

דוגמא 2 - פירוק לשברים חלקיים[עריכה]

[math]\displaystyle{ \int\frac{dx}{(x-1)(x^2+1)} }[/math]

נפרק לשברים חלקיים

[math]\displaystyle{ \frac{1}{(x-1)(x^2+1)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}=\frac{A(x^2+1)+(Bx+C)(x-1)}{(x-1)(x^2+1)} }[/math]

לכן

[math]\displaystyle{ 1=A(x^2+1)+(Bx+C)(x-1) }[/math]

דוגמא 3[עריכה]

הסבר ודוגמא