המשפט היסודי של החדוא

מתוך Math-Wiki


להרחבה

המשפט היסודי של החדו"א

המשפט היסודי של החדו"א, או משפט ניוטון-לייבניץ, נותן דרך לחישוב האינטגרל המסוים, ולמעשה, מראה את הקשר ההדוק הקיים בין האינטגרל המסוים לבין האינטגרל הלא-מסוים.

הניסוח:

תהי [math]\displaystyle{ f }[/math] פונקציה אינטגרבילית על הקטע [math]\displaystyle{ [a,b] }[/math] , ונגדיר [math]\displaystyle{ F(x):=\int\limits_a^xf(t)dt }[/math] . אזי:

  • הפונקציה [math]\displaystyle{ F }[/math] רציפה.
  • בכל נקודה [math]\displaystyle{ x_0 }[/math] שבה [math]\displaystyle{ f }[/math] רציפה, [math]\displaystyle{ F }[/math] גזירה, וכן [math]\displaystyle{ F'(x_0)=f(x_0) }[/math] .

מסקנה מהמשפט היא שאם [math]\displaystyle{ f }[/math] רציפה, הפונקציה [math]\displaystyle{ F }[/math] שהגדרנו היא פונקציה קדומה שלה (ובפרט, יש ל- [math]\displaystyle{ f }[/math] פונקציה קדומה).

אם הפונקציה [math]\displaystyle{ f }[/math] רציפה, מקבלים את נוסחת ניוטון-לייבניץ: אם [math]\displaystyle{ F }[/math] פונקציה קדומה של [math]\displaystyle{ f }[/math], אזי [math]\displaystyle{ \displaystyle\int\limits_a^b f(x)dx=F(b)-F(a) }[/math] .

סרטונים