פתרון משוואה ממעלה 3
הדרך לפתרון משוואה ממעלה 3 מיוחסת לטארטאגליה (Tartaglia). אנו נציג שתי שיטות למצוא שורש כלשהו של המשוואה. מציאת השורשים האחרים תוסבר בסוף.
הערה: השיטה עובדת מעל כל שדה שהמאפיין שלו אינו 2 או 3.
לפני שמתחילים
בהינתן משוואה [math]\displaystyle{ x^3+ax^2+bx+c=0 }[/math] ניתן להציב [math]\displaystyle{ x=y-\frac{a}{3} }[/math] .
המשוואה שתתקבל מההצבה תהיה מהצורה [math]\displaystyle{ y^3+py+q=0 }[/math] עבור מספרים [math]\displaystyle{ p,q }[/math] כלשהם. ברור כי מספיק לפתור את המשוואה ב- [math]\displaystyle{ y }[/math] כי [math]\displaystyle{ y=y_0 }[/math] הוא פתרון אם ורק אם [math]\displaystyle{ x=y_0-\frac{a}{3} }[/math] הוא פתרון של המשוואה ב- [math]\displaystyle{ x }[/math] .
לכן, מעכשיו נניח שהמשוואה שלנו היא מהצורה [math]\displaystyle{ y^3+py+q=0 }[/math] .
הערה: אם מסיבה כזו או אחרת אתם יכולים לזהות בקלות שורש של המשוואה (לדוגמא, אם [math]\displaystyle{ p=0 }[/math] או [math]\displaystyle{ q=0 }[/math]), אל תשתמשו בשיטות לעיל. הן עלולות להיכשל בגלל חלוקה ב- [math]\displaystyle{ 0 }[/math] .
שיטה ראשונה (טארטאגליה)
נחפש [math]\displaystyle{ u,v }[/math] כך שיתקיים
- [math]\displaystyle{ u^3+v^3=-q }[/math]
- [math]\displaystyle{ uv=-\frac{p}{3} }[/math] .
טענה: במצב זה, [math]\displaystyle{ y=u+v }[/math] הוא שורש של המשוואה.
הוכחה: נציב ונבדוק:
מש"ל.
כדי למצוא [math]\displaystyle{ u,v }[/math] נשים לב ש- [math]\displaystyle{ u^3\cdot v^3=-\frac{p^3}{27} }[/math] ולכן [math]\displaystyle{ u^3,v^3 }[/math] הם שורשים של המשוואה הריבועית [math]\displaystyle{ t^2+p^3/27-q=0 }[/math] . נשתמש בנוסחה לפתרון משוואה ריבועית כדי לקבל את הפתרונות [math]\displaystyle{ t_1,t_2 }[/math] ואז נבחר [math]\displaystyle{ u=\sqrt[3]{t_1},v=\sqrt[3]{t_2} }[/math] .
שיטה שניה (מאוחרת יותר)
נציב [math]\displaystyle{ y=\alpha\cos(\theta) }[/math] כאשר [math]\displaystyle{ \alpha=\sqrt{-\frac{4p}{3}} }[/math] . אם נשתמש בזהות [math]\displaystyle{ \cos(3\theta)=4\cos^3(\theta)-3\cos(\theta) }[/math] נקבל:
לכן, מספיק למצוא [math]\displaystyle{ \theta }[/math] כך ש- [math]\displaystyle{ \cos(3\theta)=-\frac{4q}{\alpha^3} }[/math] כדי ש- [math]\displaystyle{ y=\alpha\cos(\theta) }[/math] יהיה פתרון. בדרך כלל נצטרך להשתמש ב- [math]\displaystyle{ \arccos }[/math] מרוכב כדי לחלץ את [math]\displaystyle{ 3\theta }[/math] ואז נצטרך להפעיל [math]\displaystyle{ \cos }[/math] מרוכב על [math]\displaystyle{ \theta }[/math] (כי הוא כנראה יהיה מספר מרוכב).