קוד:כל מטריצה משולשית עליונה דומה לתחתונה
בהגדרה של שילוש מטריצות לא ציינו האם המטריצה $P^{-1}AP$ משולשת עליונה או תחתונה. מסתבר שאין הבדל:
\begin{remark}
אם $C$ מטריצה משולשת עליונה, אזי $C$ דומה למטריצה משולשת תחתונה.
\end{remark}
\begin{proof}
נגדיר את המטריצה $$P=\left(\begin{matrix} 0 & &1 \\
& \dots & \\
1 & &0 \end{matrix} \right )$$ (כלומר, 1-ים על האלכסון המקיים $i+j=n+1$, ובשאר אפסים).
קל לבדוק כי $P^2=I$, ולכן $P^{-1}=P$.
נסתכל על $P^{-1}CP$. מתקיים $$\left(\begin{matrix} 0 & &1 \\
& \dots & \\
1 & &0 \end{matrix} \right )\left ( \begin{matrix} c_{11} & & \star\\
& \ddots & \\
0 & & c_{nn} \end{matrix} \right )\left(\begin{matrix} 0 & &1 \\
& \dots & \\
1 & &0 \end{matrix} \right )=$$ $$= \left ( \begin{matrix} 0 & & c_{nn}\\
& \dots & \\
c_{11} & & \star \end{matrix} \right ) \left(\begin{matrix} 0 & &1 \\
& \dots & \\
1 & &0 \end{matrix} \right )= \left ( \begin{matrix} c_{nn} & &0 \\
& \ddots & \\
\star & & c_{11} \end{matrix} \right )$$.
\end{proof}