קוד:סכום ישר של חיתוכים
\begin{lem}
אם $V=U_1\oplus\cdots\oplus U_k$, ולכל $i=1,\dots,k$ נתונים תתי-מרחבים $V_i,W_i\subseteq U_i$, אזי:
$$\left(V_1\oplus\cdots\oplus V_k\right)\cap\left(W_1\oplus\cdots\oplus W_k \right )=\left(V_1\cap W_1 \right )\oplus\cdots\oplus\left(V_k\cap W_k \right )$$
\end{lem}
\begin{proof}
הביטוי בצד שמאל חוקי; הסכומים ישרים, כי $V_i$ ו-$W_i$ הם חלקים של $U_i$, ולכן כל החיתוכים הנדרשים הם אפסים. אותו נימוק עובד לביטוי בצד ימין, והסכום הוא גם ישר.
נוכיח את השוויון הדרוש באמצעות הכלה דו-כיוונית.
\begin{description}
\item[$\boxed{\subseteq}$] יהי $z\in\left(V_1\oplus\cdots\oplus V_k\right)\cap\left(W_1\oplus\cdots\oplus W_k \right )$. לכן $z=v_1+\cdots+v_k$ ומתקיים $z=w_1+\cdots+w_k$. קיבלנו שמתקיים $$\underbrace{v_1}_{\in U_1}+\cdots+\underbrace{v_k}_{\in U_k}= \underbrace{w_1}_{\in U_1}+\cdots+\underbrace{w_k}_{\in U_k}$$ לפי יחידות ההצגה, $v_i=w_i\in V_i\cap W_i$ לכל $i=1,\dots,k$; לכן, $$z\in\left(V_1\cap W_1 \right )\oplus\cdots\oplus\left(V_k\cap W_k \right )$$
\item[$\boxed{\supseteq}$] יהי $z\in\left(V_1\cap W_1 \right )\oplus\cdots\oplus\left(V_k\cap W_k \right )$, לכן $z=u_1+\cdots+u_k$.
מצד אחד, $u_i\in V_i$ לכל $i$, ולכן $z\in V_1\oplus\cdots\oplus V_k$. מצד שני, $u_i\in W_i$ לכל $i$, ולכן $z\in W_1\oplus\cdots\oplus W_k$.
בסך הכל, $z\in\left(V_1\oplus\cdots\oplus V_k\right)\cap\left(W_1\oplus\cdots\oplus W_k \right )$.
\end{proof}