קוד:קיום ויחידות הפולינום המינימלי
לכאורה, נראה שאין הכרח שיהיה פולינום מינימלי כזה. עם זאת, המשפט הבא יוכיח לא רק שקיים פולינום מינימלי לכל מטריצה, אלא שהוא גם יחיד.
\begin{thm}
הפולינום המינימלי $m_A$ קיים והוא יחיד.
\end{thm}
\begin{proof}
\begin{description}
\item[קיום] יש פולינומים מאפסים (למשל, האופייני, לפי קאלי-המילטון). אם הפולינום המאפס איננו מתוקן, אזי נתקן אותו בעזרת חילוק במקדם הראשי. נבחר את המעלה הנמוכה ביותר, ונקבל פולינום מינימלי.
\item[יחידות] נניח $m,\tilde{m}$ שניהם פולינומים מינימליים. לכן, $\deg \left (m \right )=\deg\left (\tilde{m} \right )$. שניהם מתוקנים, לכן אם $m\neq\tilde{m}$, אזי $f=m-\tilde{m}$ פולינום מאפס ממעלה נמוכה יותר, בסתירה. לכן $m=\tilde{m}$, והוכחנו יחידות.
\end{description}
\end{proof}