שיחה:88-132 אינפי 1 סמסטר א' תשעז - תיכוניסטים
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
שאלות
רציפות במידה שווה
בדרך כלל קל לדוגמה בסדרות לראות רק מהסתכלות אם סדרה מתכנסת, איך אפשר לקבל אינטואיציה מהסתכלות אם פונק' היא רציפה במידה שווה?
מבט ראשון לפעמים הוא טכניקה לא מהימנה. עם זאת אנסה לתת אינטואיציה. התשובה הקצרה היא שהגדרת Heine אומרת שאם תיקח זוג סדרות (לאו דווקא מתכנסות) שהולכות ומתקרבות האחת לשנייה אז התמונות בנקודות אלו אף הן הולכות ומתקרבות. התשובה הארוכה: אפשר לראות לפעמים באופן מיידי כמעט מתי הפונקציה איינה רבמ"ש. אני רוצה לקשר לתכונה עליה לא דיברנו הסמסטר. בחדו"א יש לנו מונח בשם השתנות: בתנועות ידיים מוגזמות מחלקים את תחום ההגדרה של הפונקציה למספר סופי ([math]\displaystyle{ n\in\mathbb{N} }[/math]) קטעים ושואלים האם לביטוי [math]\displaystyle{ V_n:=\sum_{k=1}^n|f(\alpha_k)-f(\alpha_{k-1})| }[/math] יש מקסימום. להיות רציף במ"ש גורר שביטוי זה חסום (לכל החלוקות של התחום ובלי תלות במספר הנקודות שבחלוקה). ניתן לראות אם כן שאם אני יכול למצוא סדרת חלוקות של התחום כך שסידרת ההשתנויות של הפונקציה מונוטונית עולה לא חסומה אזי היא לא רציפה במ"ש בתחום זה. קח למשל את [math]\displaystyle{ \sin(\frac 1 x) }[/math] בקטע [math]\displaystyle{ [0,1] }[/math] (מגדירים [math]\displaystyle{ f(0)=0 }[/math]). אנו יכולים לבחור סדרת חלוקות [math]\displaystyle{ P_k=\{\frac{2}{\pi},\frac{2}{3\pi},\dots,\frac{2}{(2k+1)\pi}\} }[/math] כך שערך ההשתנויות המתאימות הולך וגדל (כי בדיוק בחרנו את הנקודות בהן הפו' מקבלת את הערכים [math]\displaystyle{ \pm 1 }[/math] לסירוגין). בעצם אם תסתכל למשל בשרטוט שגוגל מפיק אתה יכול לראות שכל פונקציה שאתה יכול לבחור לה נקודות-חלוקה כך שהתזוזה שלך "לא מתונה" לדירעון עולם, לא תהיה רציפה במ"ש. בהצלחה במבחן. --ניר (שיחה) 14:16, 25 בפברואר 2017 (UTC)
תודה רבה ניר!