88-341 תשעג סמסטר א/תרגילים/תרגיל 1

מתוך Math-Wiki

שאלה 1

לכל קבוצה [math]\displaystyle{ E\subseteq\R }[/math] ומספרים [math]\displaystyle{ a,b\in\R }[/math] מגדירים [math]\displaystyle{ aE+b:=\{ax+b:x\in E\} }[/math] (ז"א [math]\displaystyle{ aE+b }[/math] היא תמונת [math]\displaystyle{ E }[/math] תחת הפונקציה הלינארית [math]\displaystyle{ x\mapsto ax+b }[/math]).

הוכיחו: [math]\displaystyle{ m^*(aE+b)=|a|m^*(E) }[/math]

שאלה 2

הוכיחו כי כל קבוצה קומפקטית ב- [math]\displaystyle{ \R }[/math] הנה מדידה לבג.

הערה: אתם רשאים להשתמש בעובדה (שעוד לא למדתם) שאיחוד בן מניה של קבוצות מדידות הנו מדיד.

שאלה 3

הגדרה: נאמר שקבוצה [math]\displaystyle{ G\subseteq\R }[/math] היא מטיפוס [math]\displaystyle{ G_\delta }[/math] אם ניתן להציג אותה כחיתוך בן-מנייה של קבוצות פתוחות.

תהי [math]\displaystyle{ E\subseteq\R }[/math] הוכיחו שקיימת קבוצה [math]\displaystyle{ G\in G_\delta }[/math] המקיימת [math]\displaystyle{ E\subseteq G }[/math] וכן [math]\displaystyle{ m^*(G)=m^*(E) }[/math]

הדרכה: עקבו אחרי השלבים הבאים:

א. הוכיחו שלכל קבוצה [math]\displaystyle{ E\subseteq\R }[/math] ולכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיימת קבוצה פתוחה [math]\displaystyle{ O }[/math] , המקיימת [math]\displaystyle{ E\subseteq O }[/math] וכן [math]\displaystyle{ m^*(O)\le m^*(E)+\varepsilon }[/math]

ב. בנו סדרה של קבוצות פתוחות מתאימות ע"פ א' וחיתכו אותן.


בהצלחה!