אינטגרציה בחלקים

מתוך Math-Wiki

הגדרה[עריכה]

אינטגרציה בחלקים הוא כינוי לנוסחת האינטגרציה הבאה:

[math]\displaystyle{ \int{f'\cdot g}=f\cdot g-\int{f\cdot g'} }[/math]

הנוסחא נובעת מיידית מנוסחת גזירת כפל:

[math]\displaystyle{ (f\cdot g)'=f'\cdot g+g'\cdot f }[/math]

הנוסחא נכונה במידה והאינטגרלים מוגדרים, ובפרט עבור [math]\displaystyle{ f,g }[/math] בעלות נגזרות רציפות.

(אחרת, אמנם יש קדומה ל- [math]\displaystyle{ f'\cdot g+g'\cdot f }[/math] , אבל לא בהכרח ל- [math]\displaystyle{ f'\cdot g }[/math] ו- [math]\displaystyle{ g'\cdot f }[/math] בנפרד.)

דוגמאות[עריכה]

א. בדוגמא זו ניתן לראות שאפשר להעלים גורם אחד על-ידי גזירתו. יתכן ונדרש בדוגמאות מסוג זה לבצע את הפעולה מספר פעמים, אך בדוגמא זו הסתפקנו בפעם אחת בלבד.

[math]\displaystyle{ \int x\cos(x)dx=? }[/math]

נסמן [math]\displaystyle{ f'=\cos(x)\ ,\ g=x }[/math]

ולכן [math]\displaystyle{ f=\sin(x)\ ,\ g'=1 }[/math]

לפי נוסחת אינטגרציה בחלקים מתקיים

[math]\displaystyle{ \int x\cos(x)dx=x\sin(x)-\int\sin(x)dx=x\sin(x)+\cos(x)+C }[/math]


ב. חזרה למקורות - בדוגמא הבאה לא ניתן להעלים גורם על-ידי גזירה, אולם חזרה לאינטגרל המקורי פותרת לנו את הבעיה.

[math]\displaystyle{ \int e^x\cos(x)dx=? }[/math]

נסמן [math]\displaystyle{ I=\int e^x\cos(x)dx }[/math]

לכן

[math]\displaystyle{ I=e^x\cos(x)+\int e^x\sin(x)dx=e^x\cos(x)+e^x\sin(x)-\int e^x\cos(x)dx=e^x\big(\sin(x)+\cos(x)\big)-I }[/math]

ולכן

[math]\displaystyle{ 2I=e^x\big(\sin(x)+\cos(x)\big) }[/math]

ומכאן יוצא

[math]\displaystyle{ \int e^x\cos(x)dx=I=\frac{e^x\big(\sin(x)+\cos(x)\big)}{2}+C }[/math]

ג. בדוגמא הבאה נראה שניתן להתייחס לכפל בקבוע [math]\displaystyle{ 1 }[/math] כנגזרת של הפונקציה [math]\displaystyle{ x }[/math] ובכך "להמציא" גורם שיעזור לנו בפתרון הבעיה באמצעות אינטגרציה בחלקים.

[math]\displaystyle{ \int\sqrt{a^2-x^2}dx=? }[/math]

נסמן [math]\displaystyle{ f'=1\ ,\ g=\sqrt{a^2-x^2} }[/math]

ולכן [math]\displaystyle{ f=x\ ,\ g'=-\frac{x}{\sqrt{a^2-x^2}} }[/math]

נפעיל נוסחת אינטגרציה בחלקים:

[math]\displaystyle{ \int\sqrt{a^2-x^2}dx=x\sqrt{a^2-x^2}+\int\frac{x^2}{\sqrt{a^2-x^2}}dx= }[/math]
[math]\displaystyle{ =x\sqrt{a^2-x^2}+\int\frac{x^2-a^2+a^2}{\sqrt{a^2-x^2}}dx= }[/math]
[math]\displaystyle{ =x\sqrt{a^2-x^2}-\int\sqrt{a^2-x^2}dx+a^2\int\frac{dx}{\sqrt{a^2-x^2}}= }[/math]


ולכן סה"כ, בדומה לדוגמא הקודמת

[math]\displaystyle{ 2\int\sqrt{a^2-x^2}dx=x\sqrt{a^2-x^2}+a^2\int\frac{dx}{\sqrt{a^2-x^2}} }[/math]

כאשר את האינטגרל האחרון נלמד בשיטת ההצבה.