88-132 סמסטר א' תשעא/ פתרון מועד ב': הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 46: שורה 46:


בנקודה 1 אנחנו מקבלים פונקציה ששואפת לאפס כפול חסומה ולכן סה"כ יש שאיפה לאפס וזו נקודת אי רציפות סליקה.
בנקודה 1 אנחנו מקבלים פונקציה ששואפת לאפס כפול חסומה ולכן סה"כ יש שאיפה לאפס וזו נקודת אי רציפות סליקה.
===ב===
<math>f(x)=[|x|]</math>
נניח ש[x] הוא המספר השלם הגדול ביותר שקטן או שווה לאיקס. אזי עבור <math>|x|<1</math> מתקיים <math>f(x)=0</math> ולכן שם הפונקציה רציפה. עבור <math>1<|x|<2</math> מתקיים <math>f(x)=1</math> ולכן <math>x=\pm 1</math> הינן נקודות אי רציפות ממין ראשון (הגבול הוא אחד מצד אחד ואפס מהצד השני). באופן דומה לכל n טבעי מתקיים ש<math>\pm n</math> הן נקודות אי רציפות ממין ראשון.

גרסה מ־16:37, 11 במרץ 2011

המבחן של פרופ' זלצמן

שאלה 1

תהי סדרה a_n, ותהי E קבוצות הגבולות החלקיים שלה. הוכח/הפרך: E סגורה

הוכחה

על מנת להוכיח שE סגורה, יש להוכיח שהיא מכילה את כל נקודות ההצטברות שלה. כלומר, אם r היא נקודת הצטברות של E אזי היא גם גבול חלקי של E.

נניח r נקודת הצטברות של E, לכן לכל אפסילון גדול מאפס קיים גבול חלקי הקרוב לr עד כדי אפסילון, ולכל גבול חלקי כזה קיימת תת סדרה המתכנסת אליו.

לכן, עבור [math]\displaystyle{ \frac{1}{n} }[/math] קיימת תת סדרה המתכנסת למספר הקרוב לr עד כדי [math]\displaystyle{ \frac{1}{n} }[/math]. לכן קיים בסדרה הזו מקום אשר החל ממנו והלאה כל האיברים קרובים לr עד כדי [math]\displaystyle{ 2/n }[/math] (המרחק בין גבול תת הסדרה לבין r ועוד מרחק בין איברי תת הסדרה לגבול תת הסדרה). נבחר איברים כאלה מתתי הסדרות, ובלבד שכל איבר יהיה אחרי האיבר הקודם. כך בנינו סדרה שאיבריה קרובים מרחק [math]\displaystyle{ 2/n }[/math] מr ולכן היא וודאי מתכנסת לr כפי שרצינו.

שאלה 2

בדוק התכנסות של הטורים הבאים:

א

[math]\displaystyle{ \sum (-1)^n\tan{\frac{1}{n}} }[/math]

נבדוק התכנסות בהחלט, נוכיח שהטור חבר של הטור ההרמוני:

[math]\displaystyle{ \lim\frac{\tan\frac{1}{n}}{\frac{1}{n}}=\lim\frac{\sin{\frac{1}{n}}}{\frac{1}{n}\cos\frac{1}{n}}=1 }[/math]

ולכן הוא אינו מתכנס בהחלט.

קל לראות שtan מונוטונית באיזור אפס (נגזרתה חיובית בלבד), וכמו כן [math]\displaystyle{ tan(0)=0 }[/math] והיא רציפה שם ולכן סה"כ יש לנו סדרה המתכנסת מונוטונית לאפס ולפי משפט לייבניץ הטור כולו מתכנס בתנאי.

ב

[math]\displaystyle{ \sum (-1)^ne^{\frac{1}{logn}} }[/math]

קל לראות ש [math]\displaystyle{ e^{\frac{1}{logn}}\rightarrow 1 }[/math] ולכן הטור מתבדר.

ג

[math]\displaystyle{ \sum (-1)^n{\frac{cos(logn)}{n(logn)^3}} }[/math]

בערך מוחלט זה קטן מ[math]\displaystyle{ \sum\frac{1}{n(logn)^3} }[/math]. זו סדרה מונוטונית יורדת ולכן ניתן להפעיל את מבחן העיבוי לקבל את הטור [math]\displaystyle{ \sum\frac{2^n}{2^n(log(2^n))^3}=\sum\frac{1}{n^3(log2)^3} }[/math] שהוא כמובן מתכנס, ולכן כל הטור מתכנס בהחלט.

שאלה 3

ציטוט משפטים - תשובות במחברת ההרצאה

שאלה 4

זהה וסווג נקודות אי רציפות:

א

[math]\displaystyle{ (x^2-1)sin(\frac{1}{x^3-x^2}) }[/math]

נקודות אי הרציפות הן כאשר המכנה מתאפס, כלומר 0 ו1. באפס מימין, [math]\displaystyle{ \frac{1}{x^3-x^2}\rightarrow -\infty }[/math]. מכיוון שזו פונקציה רציפה ששואפת לאינסוף, הסינוס מקבל עליה אינסוף מחזורים ולכן אין לו גבול. [math]\displaystyle{ x^2-1\rightarrow -1 }[/math] ולכן סה"כ יש לנו פונקציה עם גבול סופי שונה מאפס גבול פונקציה ללא גבול ולכן לא קיים הגבול החד צדדי ולכן נקודת האי רציפות אפס הינה ממין שני.

בנקודה 1 אנחנו מקבלים פונקציה ששואפת לאפס כפול חסומה ולכן סה"כ יש שאיפה לאפס וזו נקודת אי רציפות סליקה.

ב

[math]\displaystyle{ f(x)=[|x|] }[/math]

נניח ש[x] הוא המספר השלם הגדול ביותר שקטן או שווה לאיקס. אזי עבור [math]\displaystyle{ |x|\lt 1 }[/math] מתקיים [math]\displaystyle{ f(x)=0 }[/math] ולכן שם הפונקציה רציפה. עבור [math]\displaystyle{ 1\lt |x|\lt 2 }[/math] מתקיים [math]\displaystyle{ f(x)=1 }[/math] ולכן [math]\displaystyle{ x=\pm 1 }[/math] הינן נקודות אי רציפות ממין ראשון (הגבול הוא אחד מצד אחד ואפס מהצד השני). באופן דומה לכל n טבעי מתקיים ש[math]\displaystyle{ \pm n }[/math] הן נקודות אי רציפות ממין ראשון.