אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית: הבדלים בין גרסאות בדף
שורה 14: | שורה 14: | ||
==מצב שני <math>deg(p)<deg(q)-1</math>== | ==מצב שני <math>deg(p)<deg(q)-1</math>== | ||
נפרק את q לגורמים אי פריקים: | *נפרק את q לגורמים אי פריקים: | ||
<math>q(x)=(x-a_1)^{n_1}\cdots (x-a_k)^{n_k}\cdot(x^2+c_1x+b_1)^{m_1}\cdots (x^2+c_jx+b_j)^{m_j}</math> | <math>q(x)=(x-a_1)^{n_1}\cdots (x-a_k)^{n_k}\cdot(x^2+c_1x+b_1)^{m_1}\cdots (x^2+c_jx+b_j)^{m_j}</math> | ||
כעת, נפרק את הפונקציה הרציונאלית לשברים חלקיים: | *כעת, נפרק את הפונקציה הרציונאלית לשברים חלקיים: | ||
<math>\frac{p}{q}=\Big[\frac{A_{1,1}}{x-a_1}+\frac{A_{1,2}}{(x-a_1)^2}+...+\frac{A_{1,n_1}}{(x-a_1)^{n_1}}\Big]+...+\Big[\frac{A_{k,1}}{x-a_k}+\frac{A_{k,2}}{(x-a_k)^2}+...+\frac{A_{k,n_k}}{(x-a_k)^{n_k}}\Big] + \Big[\frac{B_{1,1}x + C_{1,1}}{x^2+c_1x+b_1}+\frac{B_{1,2}x + C_{1,2}}{(x^2+c_1x+b_1)^2}+...+\frac{B_{1,m_1}x + C_{1,m_1}}{(x^2+c_1x+b_1)^{m_1}}\Big]+...</math> | <math>\frac{p}{q}=\Big[\frac{A_{1,1}}{x-a_1}+\frac{A_{1,2}}{(x-a_1)^2}+...+\frac{A_{1,n_1}}{(x-a_1)^{n_1}}\Big]+...+\Big[\frac{A_{k,1}}{x-a_k}+\frac{A_{k,2}}{(x-a_k)^2}+...+\frac{A_{k,n_k}}{(x-a_k)^{n_k}}\Big] + \Big[\frac{B_{1,1}x + C_{1,1}}{x^2+c_1x+b_1}+\frac{B_{1,2}x + C_{1,2}}{(x^2+c_1x+b_1)^2}+...+\frac{B_{1,m_1}x + C_{1,m_1}}{(x^2+c_1x+b_1)^{m_1}}\Big]+...</math> | ||
*נעשה מכנה משותף ונשווה בין הפולינום שנקבל במונה לפולינום p, מקדם מקדם. נקבל מערכת משוואות ממנה נחשב את הקבועים <math>A_{i,j},B_{i,j},C_{i,j}</math>. | |||
*נחשב כל מחובר בנפרד: | |||
===אינטגרל מהצורה <math>I_m=\int\frac{A}{(x-a)^m}</math>=== | |||
נבצע הצבה <math>t=x-a</math> על מנת לקבל: | |||
<math>I_1=Aln(x-a)+C</math> | |||
<math>I_m=\frac{-A}{(m-1)(x-a)^{m-1}}+C</math> |
גרסה מ־09:22, 1 ביולי 2011
אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית
תהי פונקציה מהצורה [math]\displaystyle{ f(x)=\frac{p(x)}{q(x)} }[/math] כאשר p,q פולינומים. נתאר אלגוריתם לחישוב [math]\displaystyle{ \int f(x)dx }[/math] כאשר נקודת הכשל האפשרית היחידה באלגוריתם היא חוסר היכולת לפרק את הפולינום q לגורמים אי פריקים.
פרט למצב זה האלגוריתם יביא בהכרח לפתרון הבעייה.
מצב ראשון [math]\displaystyle{ deg(p)=deg(q)-1 }[/math]
ניתן למצוא קבוע c כך ש [math]\displaystyle{ h=cp-q' }[/math] כך ש[math]\displaystyle{ deg(h)\lt deg(q)-1 }[/math].
אז רושמים [math]\displaystyle{ \int\frac{p}{q}=\int\frac{q'+h}{c\cdot q}=\frac{1}{c}ln(q) + \int\frac{h}{c\cdot q} }[/math]
וממשיכים לשלב הבא:
מצב שני [math]\displaystyle{ deg(p)\lt deg(q)-1 }[/math]
- נפרק את q לגורמים אי פריקים:
[math]\displaystyle{ q(x)=(x-a_1)^{n_1}\cdots (x-a_k)^{n_k}\cdot(x^2+c_1x+b_1)^{m_1}\cdots (x^2+c_jx+b_j)^{m_j} }[/math]
- כעת, נפרק את הפונקציה הרציונאלית לשברים חלקיים:
[math]\displaystyle{ \frac{p}{q}=\Big[\frac{A_{1,1}}{x-a_1}+\frac{A_{1,2}}{(x-a_1)^2}+...+\frac{A_{1,n_1}}{(x-a_1)^{n_1}}\Big]+...+\Big[\frac{A_{k,1}}{x-a_k}+\frac{A_{k,2}}{(x-a_k)^2}+...+\frac{A_{k,n_k}}{(x-a_k)^{n_k}}\Big] + \Big[\frac{B_{1,1}x + C_{1,1}}{x^2+c_1x+b_1}+\frac{B_{1,2}x + C_{1,2}}{(x^2+c_1x+b_1)^2}+...+\frac{B_{1,m_1}x + C_{1,m_1}}{(x^2+c_1x+b_1)^{m_1}}\Big]+... }[/math]
- נעשה מכנה משותף ונשווה בין הפולינום שנקבל במונה לפולינום p, מקדם מקדם. נקבל מערכת משוואות ממנה נחשב את הקבועים [math]\displaystyle{ A_{i,j},B_{i,j},C_{i,j} }[/math].
- נחשב כל מחובר בנפרד:
אינטגרל מהצורה [math]\displaystyle{ I_m=\int\frac{A}{(x-a)^m} }[/math]
נבצע הצבה [math]\displaystyle{ t=x-a }[/math] על מנת לקבל:
[math]\displaystyle{ I_1=Aln(x-a)+C }[/math]
[math]\displaystyle{ I_m=\frac{-A}{(m-1)(x-a)^{m-1}}+C }[/math]