פתרון משוואה ממעלה 3: הבדלים בין גרסאות בדף
אין תקציר עריכה |
|||
שורה 24: | שורה 24: | ||
כדי למצוא <math>u,v</math> נשים לב ש-<math>u^3\cdot v^3=-p^3/27</math> ולכן <math>u^3,v^3</math> הם שורשים של המשוואה הריבועית <math>t^2+p^3/27-q=0</math>. נשתמש בנוסחה לפתרון משוואה ריבועית כדי לקבל את הפתרונות <math>t_1,t_2</math> ואז נבחר <math>u=\sqrt[3]{t_1},v=\sqrt[3]{t_2}</math>. | כדי למצוא <math>u,v</math> נשים לב ש-<math>u^3\cdot v^3=-p^3/27</math> ולכן <math>u^3,v^3</math> הם שורשים של המשוואה הריבועית <math>t^2+p^3/27-q=0</math>. נשתמש בנוסחה לפתרון משוואה ריבועית כדי לקבל את הפתרונות <math>t_1,t_2</math> ואז נבחר <math>u=\sqrt[3]{t_1},v=\sqrt[3]{t_2}</math>. | ||
== שיטה שנייה (מאוחרת יותר) == | |||
בבב |
גרסה מ־16:36, 22 בנובמבר 2011
הדרך לפתרון משוואה ממעלה 3 מיוחסת לטרטליה (Tartaglia). אנו נציג שתי שיטות למצוא שורש כלשהו של המשוואה. מציאת השורשים האחרים תוסבר בסוף.
הערה: השיטה עובדת מעל כל שדה שהמאפיין שלו אינו 2 או 3.
לפני שמתחילים
בהינתן משוואה [math]\displaystyle{ x^3+ax^2+bx+c=0 }[/math] ניתן להציב [math]\displaystyle{ x=y-a/3 }[/math]. המשוואה שתתקבל מההצבה תהייה מהצורה [math]\displaystyle{ y^3+py+q=0 }[/math] עבור מספרים [math]\displaystyle{ p,q }[/math] כלשהם. ברור כי מספיק לפתור את המשוואה ב-[math]\displaystyle{ y }[/math] כי [math]\displaystyle{ y=y_0 }[/math] הוא פיתרון אם ורק אם [math]\displaystyle{ x=y_0-a/3 }[/math] הוא פיתרון של המשוואה ב-[math]\displaystyle{ x }[/math].
לכן, מעכשיו נניח שהמשוואה שלנו היא מהצורה [math]\displaystyle{ y^3+py+q=0 }[/math].
הערה: אם מסיבה כזו או אחרת אתם יכולים לזהות בקלות שורש של המשוואה (לדוגמא, אם [math]\displaystyle{ p=0 }[/math] או [math]\displaystyle{ q=0 }[/math]), אל תשתמשו בשיטות לעיל. הן עלולות להיכשל בגלל חלוקה ב-0.
שיטה ראשונה (טרטליה)
נחפש [math]\displaystyle{ u,v }[/math] כך שיתקיים [math]\displaystyle{ u^3+v^3=-q }[/math] ו-[math]\displaystyle{ uv=-p/3 }[/math].
טענה: במצב זה, [math]\displaystyle{ y=u+v }[/math] הוא שורש של המשוואה.
הוכחה: נציב ונבדוק:
[math]\displaystyle{ y^3+py+q=u^3+3u^2v+3uv^2+v^3+p(u+v)+q=(u^3+v^3)+3uv(u+v)+p(u+v)+q=-q-p(u+v)+p(u+v)+q=0 }[/math]
מש"ל.
כדי למצוא [math]\displaystyle{ u,v }[/math] נשים לב ש-[math]\displaystyle{ u^3\cdot v^3=-p^3/27 }[/math] ולכן [math]\displaystyle{ u^3,v^3 }[/math] הם שורשים של המשוואה הריבועית [math]\displaystyle{ t^2+p^3/27-q=0 }[/math]. נשתמש בנוסחה לפתרון משוואה ריבועית כדי לקבל את הפתרונות [math]\displaystyle{ t_1,t_2 }[/math] ואז נבחר [math]\displaystyle{ u=\sqrt[3]{t_1},v=\sqrt[3]{t_2} }[/math].
שיטה שנייה (מאוחרת יותר)
בבב