מכינה למתמטיקה קיץ תשעב/תרגילים/1/פתרון 1: הבדלים בין גרסאות בדף
Tomer Yogev (שיחה | תרומות) (←2) |
Tomer Yogev (שיחה | תרומות) (←2) |
||
שורה 202: | שורה 202: | ||
פתרון: <math>{-3-\sqrt{5} \over 2} < x </math> | פתרון: <math>{-3-\sqrt{5} \over 2} < x </math> | ||
*<math>|g(x^2)-f(x)| < x</math> | |||
::<math>g(x^2)=\begin{cases}x^2-1 & x<-1 \vee 1<x \\ 2x^2 & -1 \leq x \leq 1 \end{cases}</math> | |||
<math>x<-1</math> : <math>|g(x^2)-f(x)|=|x^2-1+x^2|=|2x^2-1|<x</math> . בגלל שאנחנו בתחום <math>x<-1</math> נקבל שהביטוי בערך המוחלט תמיד חיובי ולכן ניתן להשמיט את הערך המוחלט ולקבל: <math>2x^2-1<x</math> . לאי שוויון זה אין פתרון בתחום | |||
<math>-1 \leq x < 0</math> : נקבל <math>|2x^2+x^2|=|3x^2|=3x^2<x</math> ואין לזה פתרון בתחום | |||
<math>x = 0</math> : נציב ונקבל שזה לא פתרון | |||
<math>0 < x \leq 1 </math> : נקבל <math>|2x^2-x^2|=x^2<x</math> והפתרון הוא <math>0<x<1</math> | |||
<math>1<x</math> : נקבל <math>|x^2-1-x^2|=1<x</math> והפתרון הוא כל התחום | |||
פתרון: <math>0 < x < 1 </math> או <math>1 < x</math> |
גרסה מ־11:42, 8 באוגוסט 2012
1
- [math]\displaystyle{ x^2+2x+1\leq 0 }[/math]
נבדוק מתי הביטוי באגף שמאל מתאפס: [math]\displaystyle{ x^2+2x+1 = 0 }[/math].
לפי נוסחה נקבל פתרון יחיד [math]\displaystyle{ x=-1 }[/math].
המקדם של [math]\displaystyle{ x^2 }[/math] חיובי (1) לכן הביטוי מתאפס ב[math]\displaystyle{ -1 }[/math] וחיובי מימינו ומשמאלו (ולכן אינו שלילי לאף x).
פתרון: [math]\displaystyle{ x=-1 }[/math]
- [math]\displaystyle{ (1-x)(x+6)\gt 0 }[/math]
נבדוק מתי מתאפס. הביטוי הוא מכפלה של שני ביטויים ולכן הוא מתאפס כאשר כל אחד מהם מתאפס. לכן אגף שמאל מתאפס ב[math]\displaystyle{ x=1 }[/math] וב[math]\displaystyle{ x=-6 }[/math].
אם נפתח סוגריים נקבל [math]\displaystyle{ -x^2-5x+6 }[/math] והמקדם של [math]\displaystyle{ x^2 }[/math] שלילי לכן הביטוי מקבל ערכים שליליים כש[math]\displaystyle{ x\lt -6 }[/math] ו[math]\displaystyle{ x\gt 1 }[/math] וערכים חיוביים כש[math]\displaystyle{ -6\lt x\lt 1 }[/math]
פתרון: [math]\displaystyle{ -6\lt x\lt 1 }[/math]
- [math]\displaystyle{ -3x^2 +6x - 1 \geq 0 }[/math]
מתי הביטוי מתאפס: [math]\displaystyle{ -3x^2+6x-1=0 }[/math]? לפי נוסחה נקבל [math]\displaystyle{ x={-6 \pm \sqrt{36-12} \over -6}=1 \pm {\sqrt{6} \over 3} }[/math]
המקדם של [math]\displaystyle{ x^2 }[/math] שלילי לכן הערכים החיוביים מתקבלים בין הפתרונות שמצאנו.
פתרון: [math]\displaystyle{ 1 - {\sqrt{6} \over 3} \leq x \leq 1 + {\sqrt{6} \over 3} }[/math]
- [math]\displaystyle{ (x^2+1)(x^2-1)x^2 \leq 0 }[/math]
נפרק לשלושה ביטויים: [math]\displaystyle{ x^2+1 }[/math] , [math]\displaystyle{ x^2-1 }[/math] , [math]\displaystyle{ x^2 }[/math] , ונבדוק מתי כל אחד מהם חיובי ושלילי.
[math]\displaystyle{ x^2+1 }[/math] : ריבוע של מספר הוא תמיד אי-שלילי, ולכן בתוספת 1 הוא תמיד חיובי (למשוואה [math]\displaystyle{ x^2=-1 }[/math] אין פתרון ממשי)
[math]\displaystyle{ x^2-1 }[/math] : מתאפס ב[math]\displaystyle{ x= \pm 1 }[/math]. הביטוי שלילי ביניהם וחיובי ב[math]\displaystyle{ x\lt -1 }[/math] או [math]\displaystyle{ x\gt 1 }[/math]
[math]\displaystyle{ x^2 }[/math] : מתאפס ב0 וחיובי אחרת.
קיבלנו מספר תחומים. נבדוק את סימן הביטוי בכל תחום לפי מכפלת הסימנים של הביטויים הקטנים:
[math]\displaystyle{ x\lt -1 }[/math] : הביטוי הראשון חיובי, השני חיובי והשלישי חיובי. לכן המכפלה גם חיובית
[math]\displaystyle{ -1\lt x\lt 0 }[/math] : הביטוי הראשון חיובי, השני שלילי והשלישי חיובי. לכן המכפלה שלילית
[math]\displaystyle{ 0\lt x\lt 1 }[/math] : הביטוי הראשון חיובי, השני שלילי והשלישי חיובי. לכן המכפלה שלילית
[math]\displaystyle{ 1\lt x }[/math] : הביטוי הראשון חיובי, השני חיובי והשלישי חיובי. לכן המכפלה חיובית
בנקודות [math]\displaystyle{ x=0 , \pm 1 }[/math] הביטוי מתאפס לכן גם נקודות אלה הן פתרונות לאי השוויון.
פתרון: [math]\displaystyle{ -1 \leq x \leq 1 }[/math]
- [math]\displaystyle{ (x-1)(x-2)(x-3)(x-4)\cdots (x-n)\gt 0 }[/math]
כאשר [math]\displaystyle{ n\in\mathbb{N} }[/math]. שימו לב, רצוי לחלק למקרים אפשריים של n.
השאלה היא מתי מכפלה של n גורמים היא חיובית. התשובה היא כאשר מספר הגורמים השליליים הוא זוגי. כאשר x מספר שלם בין 1 לn, הביטוי מתאפס ולכן זה לא פיתרון.
לכן אנחנו מתעניינים בתחומים [math]\displaystyle{ x \lt 1 , 1\lt x\lt 2 , ... , n\lt x }[/math]. בתחום האחרון, [math]\displaystyle{ n\lt x }[/math] , כל הגורמים חיוביים ולכן תחום זה הוא תמיד פתרון. נחלק למקרים:
n זוגי: אם x קטן מ1, כל הגורמים שליליים ולכן המכפלה כולה חיובית (כי n זוגי) ולכן זה פתרון. נשארנו עם התחומים מהצורה [math]\displaystyle{ i\lt x\lt i+1 }[/math] עבור i בין 1 לn-1. אם i זוגי אז יש עוד מספר זוגי של תחומים כאלה אחריו (כי n זוגי) ולכן המכפלה חיובית. אחרת, יש מספר אי זוגי של גורמים שליליים ולכן המכפלה שלילית.
לכן התשובה עבור n זוגי היא: [math]\displaystyle{ x\lt 1 , 2\lt x\lt 3 , 4\lt x\lt 6 , ... , 2i \lt x \lt 2i+1 , ... , n-2 \lt x \lt n-1 , n\lt x }[/math]
עבור n אי זוגי נפתור בצורה דומה ונקבל: [math]\displaystyle{ 1\lt x\lt 2 , 3\lt x\lt 4 , ... \lt 2i-1\lt x\lt 2i , ... , n-2 \lt x \lt n-1, n \lt x }[/math]
- [math]\displaystyle{ |x|\leq 7 }[/math]
נחלק למקרים: אם [math]\displaystyle{ x \ geq 0 }[/math] נקבל את אי השוויון [math]\displaystyle{ |x|\leq 7 }[/math] ולכן סה"כ הפתרונות של מקרה זה הם [math]\displaystyle{ 0 \leq x \leq 7 }[/math]
אם [math]\displaystyle{ x\lt 0 }[/math] נקבל [math]\displaystyle{ -x \le 7 }[/math] , לכן [math]\displaystyle{ x \geq -7 }[/math] וסה"כ הפתרונות הם [math]\displaystyle{ -7 \leq x \lt 0 }[/math]
נאחד את הפתרונות של שני המקרים ונקבל את הפתרון
פתרון: [math]\displaystyle{ -7 \leq x \leq 7 }[/math]
- [math]\displaystyle{ |2x-1|\lt 7 }[/math]
נחלק למקרים. הביטוי הערך המוחלט מתאפס ב[math]\displaystyle{ 1 /over 2 }[/math] לכן נתבונן במקרים:
[math]\displaystyle{ x \geq {1 \over 2} }[/math] : אי השוויון הוא [math]\displaystyle{ 2x-1\lt 7 }[/math] לכן [math]\displaystyle{ 2x\lt 8 }[/math] ו[math]\displaystyle{ x\lt 4 }[/math]. התשובה היא [math]\displaystyle{ {1 \over 2} \leq x \lt 4 }[/math]
[math]\displaystyle{ x \lt {1 \over 2} }[/math] : אי השוויון הוא [math]\displaystyle{ -2x+1\lt 7 }[/math] לכן [math]\displaystyle{ -2x\lt 6 }[/math] לכן [math]\displaystyle{ x\gt -3 }[/math]. התשובה היא [math]\displaystyle{ -3 \lt x \lt {1 \over 2} }[/math]. נאחד את הפתרונות ונקבל:
פתרון: [math]\displaystyle{ -3 \lt x \lt 4 }[/math]
- [math]\displaystyle{ (x-1)|x-1| \gt 1 }[/math]
נחלק למקרים:
[math]\displaystyle{ x\gt 1 }[/math] : אי השוויון הוא [math]\displaystyle{ (x-1)(x-1) \gt 1 }[/math]. נפשט ונקבל [math]\displaystyle{ x^2-2x \gt 0 }[/math]. ביטוי זה חיובי עבור [math]\displaystyle{ x\lt 0 }[/math] או [math]\displaystyle{ x \gt 2 }[/math] (בדקו!). לכן הפתרון הוא [math]\displaystyle{ x\gt 2 }[/math]
[math]\displaystyle{ x\lt 1 }[/math] : אי השוויון הוא [math]\displaystyle{ -(x-1)(x-1)\gt 1 }[/math]. נפשט ונקבל [math]\displaystyle{ -x^2 +2x -2 \gt 0 }[/math] ביטוי זה אף פעם לא חיובי (בדקו!), לכן במקרה זה אין פתרון.
פתרון: [math]\displaystyle{ x\gt 2 }[/math]
- [math]\displaystyle{ \frac{|x|}{x} \gt 1 }[/math]
נשים לב שלביטוי אין ערך ב[math]\displaystyle{ x=0 }[/math]. אם [math]\displaystyle{ x\gt 0 }[/math] נקבל [math]\displaystyle{ {x\over x} \gt 1 }[/math] וזה לא יתכן. אם [math]\displaystyle{ x\lt 0 }[/math] נקבל [math]\displaystyle{ {-x \over x} \gt 1 }[/math] וגם זה לא יתכן.
פתרון: אף x לא מקיים את אי השוויון
- [math]\displaystyle{ |x-1|\gt |x^2-1| }[/math]
הביטוי בערך המוחלט הימני חיובי עבור [math]\displaystyle{ x\lt -1 }[/math] או [math]\displaystyle{ x\gt 1 }[/math].
[math]\displaystyle{ x \leq -1 }[/math] : נקבל אי שוויון [math]\displaystyle{ -(x-1) \gt x^2 - 1 }[/math] . נפשט ונקבל [math]\displaystyle{ x^2 +x -2 \lt 0 }[/math] והפתרון של זה הוא [math]\displaystyle{ -2 \lt x \lt 1 }[/math] . סה"כ: [math]\displaystyle{ -2 \lt x \leq -1 }[/math]
[math]\displaystyle{ -1 \lt x \leq 1 }[/math] : נקבל אי שוויון [math]\displaystyle{ -(x-1) \gt -(x^2-1) }[/math] ואחרי פישוט: [math]\displaystyle{ x^2 -x \gt 0 }[/math] . הפתרון הוא [math]\displaystyle{ x\lt 0 }[/math] או [math]\displaystyle{ x \gt 1 }[/math] לכן סה"כ: [math]\displaystyle{ -1 \lt x \lt 0 }[/math] .
[math]\displaystyle{ x \gt 1 }[/math] : נקבל [math]\displaystyle{ x-1 \gt x^2 - 1 }[/math] . נפשט: [math]\displaystyle{ x^2 -x \lt 0 }[/math] והפתרון הוא [math]\displaystyle{ 0 \lt x \lt 1 }[/math] . לכן במקרה זה אין פתרון.
פתרון: [math]\displaystyle{ -2 \lt x 0 }[/math]
- [math]\displaystyle{ |x^2-4x-3| + |x-1| + |x-2| \gt 2x }[/math]
הביטוי הריבועי מתאפס ב [math]\displaystyle{ 2 \pm \sqrt{7} }[/math] . נחלק למקרים:
[math]\displaystyle{ x \leq 2-\sqrt{7} }[/math] : [math]\displaystyle{ x \lt 0 }[/math] או [math]\displaystyle{ x \gt 8 }[/math] לכן סה"כ [math]\displaystyle{ x \leq 2 - \sqrt{7} }[/math]
[math]\displaystyle{ 2-\sqrt{7} \lt x \leq 1 }[/math]: [math]\displaystyle{ -\sqrt{6} \lt x \lt \sqrt{6} }[/math] . לכן סה"כ: [math]\displaystyle{ 2-\sqrt{7}\lt x\leq 1 }[/math]
[math]\displaystyle{ 1 \lt x \leq 2 }[/math] : [math]\displaystyle{ 1-\sqrt{5}\lt x\lt 1+\sqrt{5} }[/math] . לכן סה"כ: [math]\displaystyle{ 1 \lt x \leq 2 }[/math]
[math]\displaystyle{ 2 \lt x \leq 2 + \sqrt{7} }[/math] : [math]\displaystyle{ 0\lt x\lt 4 }[/math] . לכן סה"כ: [math]\displaystyle{ 2 \lt x \lt 4 }[/math]
[math]\displaystyle{ x \gt 2+\sqrt{7} }[/math] : [math]\displaystyle{ x\lt 2-\sqrt{10} }[/math] או [math]\displaystyle{ x\gt 2+\sqrt{10} }[/math] . לכן סה"כ: [math]\displaystyle{ x\gt 2+\sqrt{10} }[/math]
פתרון: [math]\displaystyle{ x\lt 4 }[/math] או [math]\displaystyle{ x\gt 2+\sqrt{10} }[/math]
2
נגדיר שתי פונקציות
- [math]\displaystyle{ f(x)=\begin{cases}x^2 & x\gt 0 \\ 0 & x=0 \\ -x^2 & x\lt 0\end{cases} }[/math]
- [math]\displaystyle{ g(x)=\begin{cases}x-1 & x\gt 1 \\ |x|+x & x \leq 1\end{cases} }[/math]
מצא עבור אילו ערכי x מתקיימים אי השיוויונים הבאים:
- [math]\displaystyle{ g(x)\leq 0 }[/math]
נפריד למקרים:
[math]\displaystyle{ x\lt 0 }[/math] : במקרה זה אי השוויון הוא [math]\displaystyle{ -x + x \lt =0 }[/math] והוא תמיד מתקיים
[math]\displaystyle{ 0 \leq x \leq 1 }[/math] : אי השוויון הוא [math]\displaystyle{ x+x\lt =0 }[/math] והוא מתקיים עבור [math]\displaystyle{ x\lt =0 }[/math] לכן הפתרון הוא [math]\displaystyle{ x=0 }[/math]
[math]\displaystyle{ 1 \lt x }[/math] : אי השוויון הוא [math]\displaystyle{ x-1\leq 0 }[/math] לכן הפתרון הוא [math]\displaystyle{ x\leq 1 }[/math] ולכן אין פתרון
פתרון: [math]\displaystyle{ x \leq 0 }[/math]
- [math]\displaystyle{ f(x+1)\gt 0 }[/math]
[math]\displaystyle{ f(x+1)=\begin{cases}(x+1)^2 & x\gt -1 \\ 0 & x=-1 \\ -(x+1)^2 & x\lt -1\end{cases} }[/math]
נפריד למקרים:
[math]\displaystyle{ x\gt -1 }[/math] : אי השוויון הוא [math]\displaystyle{ (x+1)^2 \gt 0 }[/math] וריבוע של מספר הוא תמיד אי שלילי לכן זה מתקיים לכל [math]\displaystyle{ x\gt -1 }[/math]
[math]\displaystyle{ x=-1 }[/math] : ערך הפונקציה הוא 0 ולכן זה לא פתרון
[math]\displaystyle{ x\lt -1 }[/math] : אי השוויון הוא [math]\displaystyle{ -(x+1)^2 \gt 0 }[/math] וזה לא מתקיים לאף ערך בתחום
פתרון: [math]\displaystyle{ x \gt -1 }[/math]
- [math]\displaystyle{ g\big(f(x)\Big) \geq 0 }[/math]
נשים לב שמתקיים: [math]\displaystyle{ g(x) \geq 0 }[/math] לכל x:
[math]\displaystyle{ x\lt 0 }[/math] : [math]\displaystyle{ g(x)=0 }[/math]
[math]\displaystyle{ 0 \leq x \leq 1 }[/math] : [math]\displaystyle{ g(x) = 2x \geq 0 }[/math]
[math]\displaystyle{ x \gt 1 }[/math] : [math]\displaystyle{ g(x) = x-1 \geq 0 }[/math]
לכן גם מתקיים [math]\displaystyle{ g(f(x)) \geq 0 }[/math] לכל x
- [math]\displaystyle{ f(x+1) +g(x-1) \gt x }[/math]
- [math]\displaystyle{ f(x+1)=\begin{cases}(x+1)^2 & x\gt -1 \\ 0 & x=-1 \\ -(x+1)^2 & x\lt -1\end{cases} }[/math]
- [math]\displaystyle{ g(x-1)=\begin{cases}x-2 & x\gt 2 \\ 2x-2 & 1 \leq x \leq 2 \\ 0 & x \lt 0\end{cases} }[/math]
[math]\displaystyle{ x\lt -1 }[/math] : [math]\displaystyle{ f(x+1)+g(x-1)=-(x+1)^2\gt x }[/math] . הפתרון הוא [math]\displaystyle{ {-3-\sqrt{5} \over 2} \lt x\lt -1 }[/math]
[math]\displaystyle{ x=-1 }[/math] : [math]\displaystyle{ f(x+1)+g(x-1)=0\gt -1 }[/math] לכן זה פיתרון.
[math]\displaystyle{ -1 \lt x \lt 1 }[/math] : [math]\displaystyle{ f(x+1)+g(x-1) = (x+1)^2\gt x }[/math] . נכון לכל x.
[math]\displaystyle{ 1 \leq x \leq 2 }[/math] : [math]\displaystyle{ f(x+1) + g(x-1) = (x+1)^2+2x-2 \gt x }[/math] . כל התחום הוא פתרון
[math]\displaystyle{ 2\lt x }[/math] : [math]\displaystyle{ f(x+1)+g(x-1)=(x+1)^2+x-2\gt x }[/math] . גם כאן כל התחום הוא פתרון
פתרון: [math]\displaystyle{ {-3-\sqrt{5} \over 2} \lt x }[/math]
- [math]\displaystyle{ |g(x^2)-f(x)| \lt x }[/math]
- [math]\displaystyle{ g(x^2)=\begin{cases}x^2-1 & x\lt -1 \vee 1\lt x \\ 2x^2 & -1 \leq x \leq 1 \end{cases} }[/math]
[math]\displaystyle{ x\lt -1 }[/math] : [math]\displaystyle{ |g(x^2)-f(x)|=|x^2-1+x^2|=|2x^2-1|\lt x }[/math] . בגלל שאנחנו בתחום [math]\displaystyle{ x\lt -1 }[/math] נקבל שהביטוי בערך המוחלט תמיד חיובי ולכן ניתן להשמיט את הערך המוחלט ולקבל: [math]\displaystyle{ 2x^2-1\lt x }[/math] . לאי שוויון זה אין פתרון בתחום
[math]\displaystyle{ -1 \leq x \lt 0 }[/math] : נקבל [math]\displaystyle{ |2x^2+x^2|=|3x^2|=3x^2\lt x }[/math] ואין לזה פתרון בתחום
[math]\displaystyle{ x = 0 }[/math] : נציב ונקבל שזה לא פתרון
[math]\displaystyle{ 0 \lt x \leq 1 }[/math] : נקבל [math]\displaystyle{ |2x^2-x^2|=x^2\lt x }[/math] והפתרון הוא [math]\displaystyle{ 0\lt x\lt 1 }[/math]
[math]\displaystyle{ 1\lt x }[/math] : נקבל [math]\displaystyle{ |x^2-1-x^2|=1\lt x }[/math] והפתרון הוא כל התחום
פתרון: [math]\displaystyle{ 0 \lt x \lt 1 }[/math] או [math]\displaystyle{ 1 \lt x }[/math]