לכסון מטריצה: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "'''הגדרה:''' תהי A מטריצה ריבועית. אומרים כי A מטריצה '''לכסינה''' אם היא [[דמיון בין מטריצות|דומה...")
 
אין תקציר עריכה
שורה 2: שורה 2:


אומרים כי A מטריצה '''לכסינה''' אם היא [[דמיון בין מטריצות|דומה]] למטריצה אלכסונית
אומרים כי A מטריצה '''לכסינה''' אם היא [[דמיון בין מטריצות|דומה]] למטריצה אלכסונית
'''משפט.'''
תהי <math>A\in\mathbb{F}^{n\times n}</math> מטריצה ריבועית. A לכסינה אם ורק אם קיים בסיס B למרחב <math>\mathbb{F}^n</math> כך שכל הוקטורים בבסיס B הינם וקטורים עצמיים של המטריצה A.
'''הוכחה.'''


==דוגמא חשובה לשימוש בלכסינות==
==דוגמא חשובה לשימוש בלכסינות==

גרסה מ־11:48, 25 באוקטובר 2012

הגדרה: תהי A מטריצה ריבועית.

אומרים כי A מטריצה לכסינה אם היא דומה למטריצה אלכסונית


משפט.

תהי [math]\displaystyle{ A\in\mathbb{F}^{n\times n} }[/math] מטריצה ריבועית. A לכסינה אם ורק אם קיים בסיס B למרחב [math]\displaystyle{ \mathbb{F}^n }[/math] כך שכל הוקטורים בבסיס B הינם וקטורים עצמיים של המטריצה A.


הוכחה.


דוגמא חשובה לשימוש בלכסינות

באמצעות לכסון ניתן למצוא חזקות גבוהות של מטריצות באופן הבא. נניח A מטריצה לכסינה, לכן קיימת מטריצה אלכסונית D ומטריצה הפיכה P כך שמתקיים:

[math]\displaystyle{ A=PDP^{-1} }[/math]

ולכן

[math]\displaystyle{ A^k=\Big(PDP^{-1}\Big)^k = PDP^{-1}\cdot PDP^{-1} \cdots PDP^{-1} }[/math]


אבל

[math]\displaystyle{ P^{-1}\cdot P=I }[/math]


לכן סה"כ אנחנו מקבלים

[math]\displaystyle{ A^k=PD^kP^{-1} }[/math]


כאשר להעלות מטריצה אלכסונית בחזקה זה קל מאד.