83-218 מבנים אלגבריים להנדסה סמסטר א תשעו: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 41: שורה 41:
שימו לב כי משפט לגרנז <math>|{G}/{H}|= \frac{|G|}{|H|}</math> '''אינו''' דורש כי <math>H</math> תהיה תת חבורה נורמאלית אלא רק תת חבורה. במקרה ש <math>H</math> תת חבורה הקבוצה <math>{G}/{H}=\{gH:g\in G\}</math>  נקראת קבוצת הקוסטים השמאליים (ביחס ל H) והיא גם קבוצת המנה ביחס ליחס שקילות המוגדר <math>g_1 \equiv g_2 \iff g_1^{-1} g_2\in H</math>
שימו לב כי משפט לגרנז <math>|{G}/{H}|= \frac{|G|}{|H|}</math> '''אינו''' דורש כי <math>H</math> תהיה תת חבורה נורמאלית אלא רק תת חבורה. במקרה ש <math>H</math> תת חבורה הקבוצה <math>{G}/{H}=\{gH:g\in G\}</math>  נקראת קבוצת הקוסטים השמאליים (ביחס ל H) והיא גם קבוצת המנה ביחס ליחס שקילות המוגדר <math>g_1 \equiv g_2 \iff g_1^{-1} g_2\in H</math>


*[[מדיה:Algebraic structuresEngineering2016Ex9.pdf|תרגיל 8]],
*[[מדיה:Algebraic structuresEngineering2016Ex9.pdf|תרגיל 8]], [[מדיה:Algebraic structuresEngineering2016Ex9sol.pdf|פתרון תרגיל 8]]
 
*[[מדיה:Algebraic structuresEngineering2016Ex10.pdf|תרגיל 9]],


== מערכי תירגול (על אחריותו של יאיר בלבד)==  
== מערכי תירגול (על אחריותו של יאיר בלבד)==  

גרסה מ־17:11, 5 בינואר 2016

83-218 מבנים אלגבריים להנדסה

קישורים


הודעות

  • במהלך הסמסטר יתקיימו 3 בחנים. חצי מכל בוחן יבוסס על השאלות מש.ב.
  • מומלץ לענות על ש.ב. למרות שאין בדיקה.

בחנים

בוחן 1

תאריך: ביום חמישי 19/11/2015 , השעות 8:00-9:30 (לא כולל הארכות זמן)

מיקום: בניין 1103 חדר 53

חומר: תירגולים 2+1, ש.ב. 0+1+2, הרצאות: אלו שהתקיימו בשבועות אלו (עד ההרצאה של 8.11.2015)

הבוחן ופתרונו

בוחן 2

תאריך: ביום חמישי 31/12/2015 , השעות 8:00-9:30 (לא כולל הארכות זמן)

חומר: החומר הרלוונטי לש.ב. מספר 3-7 (כולל)

בוחן 3

תאריך: ביום חמישי 21/1/2016 , השעות 8:00-9:30 (לא כולל הארכות זמן)

תרגילים

שימו לב כי משפט לגרנז [math]\displaystyle{ |{G}/{H}|= \frac{|G|}{|H|} }[/math] אינו דורש כי [math]\displaystyle{ H }[/math] תהיה תת חבורה נורמאלית אלא רק תת חבורה. במקרה ש [math]\displaystyle{ H }[/math] תת חבורה הקבוצה [math]\displaystyle{ {G}/{H}=\{gH:g\in G\} }[/math] נקראת קבוצת הקוסטים השמאליים (ביחס ל H) והיא גם קבוצת המנה ביחס ליחס שקילות המוגדר [math]\displaystyle{ g_1 \equiv g_2 \iff g_1^{-1} g_2\in H }[/math]

מערכי תירגול (על אחריותו של יאיר בלבד)