אינטגרציה בחלקים: הבדלים בין גרסאות בדף
(יצירת דף עם התוכן "==הגדרה== '''אינטגרציה בחלקים''' הוא כינוי לנוסחאת האינטגרציה הבאה: ::<math>\int{f'g}=fg-\int{fg'}</math> הנו...") |
יהודה שמחה (שיחה | תרומות) אין תקציר עריכה |
||
(4 גרסאות ביניים של 2 משתמשים אינן מוצגות) | |||
שורה 1: | שורה 1: | ||
[[קטגוריה:אינפי]] | |||
==הגדרה== | ==הגדרה== | ||
'''אינטגרציה בחלקים''' הוא כינוי | '''אינטגרציה בחלקים''' הוא כינוי לנוסחת האינטגרציה הבאה: | ||
:<math>\int{f'\cdot g}=f\cdot g-\int{f\cdot g'}</math> | |||
הנוסחא נובעת מיידית | הנוסחא נובעת מיידית מנוסחת גזירת כפל: | ||
:<math>(f\cdot g)'=f'\cdot g+g'\cdot f</math> | |||
הנוסחא נכונה במידה והאינטגרלים מוגדרים, ובפרט עבור <math>f,g</math> בעלות נגזרות רציפות. | |||
<math>\ | (אחרת, אמנם יש קדומה ל- <math>f'\cdot g+g'\cdot f</math> , אבל לא בהכרח ל- <math>f'\cdot g</math> ו- <math>g'\cdot f</math> בנפרד.) | ||
==דוגמאות== | |||
א. בדוגמא זו ניתן לראות שאפשר להעלים גורם אחד על-ידי גזירתו. יתכן ונדרש בדוגמאות מסוג זה לבצע את הפעולה מספר פעמים, אך בדוגמא זו הסתפקנו בפעם אחת בלבד. | |||
<math>\int x\cos(x)dx=?</math> | |||
נסמן <math>f'=\cos(x)\ ,\ g=x</math> | |||
ולכן <math>f=\sin(x)\ ,\ g'=1</math> | |||
לפי נוסחת אינטגרציה בחלקים מתקיים | |||
:<math>\int x\cos(x)dx=x\sin(x)-\int\sin(x)dx=x\sin(x)+\cos(x)+C</math> | |||
ב. '''חזרה למקורות''' - בדוגמא הבאה לא ניתן להעלים גורם על-ידי גזירה, אולם חזרה לאינטגרל המקורי פותרת לנו את הבעיה. | |||
<math>\int e^x\cos(x)dx=?</math> | |||
נסמן <math>I=\int e^x\cos(x)dx</math> | |||
לכן | לכן | ||
:<math>I=e^x\cos(x)+\int e^x\sin(x)dx=e^x\cos(x)+e^x\sin(x)-\int e^x\cos(x)dx=e^x\big(\sin(x)+\cos(x)\big)-I</math> | |||
ולכן | ולכן | ||
:<math>2I=e^x\big(\sin(x)+\cos(x)\big)</math> | |||
ומכאן יוצא | ומכאן יוצא | ||
:<math>\int e^x\cos(x)dx=I=\frac{e^x\big(\sin(x)+\cos(x)\big)}{2}+C</math> | |||
ג. בדוגמא הבאה נראה שניתן להתייחס לכפל בקבוע <math>1</math> כנגזרת של הפונקציה <math>x</math> ובכך "להמציא" גורם שיעזור לנו בפתרון הבעיה באמצעות אינטגרציה בחלקים. | |||
<math>\int\sqrt{a^2-x^2}dx=?</math> | |||
<math>\ | נסמן <math>f'=1\ ,\ g=\sqrt{a^2-x^2}</math> | ||
ולכן <math>f=x\ ,\ g'=-\frac{x}{\sqrt{a^2-x^2}}</math> | |||
נפעיל נוסחת אינטגרציה בחלקים: | |||
:<math>\int\sqrt{a^2-x^2}dx=x\sqrt{a^2-x^2}+\int\frac{x^2}{\sqrt{a^2-x^2}}dx=</math> | |||
:<math>=x\sqrt{a^2-x^2}+\int\frac{x^2-a^2+a^2}{\sqrt{a^2-x^2}}dx=</math> | |||
:<math>=x\sqrt{a^2-x^2}-\int\sqrt{a^2-x^2}dx+a^2\int\frac{dx}{\sqrt{a^2-x^2}}=</math> | |||
ולכן סה"כ, בדומה לדוגמא הקודמת | ולכן סה"כ, בדומה לדוגמא הקודמת | ||
:<math>2\int\sqrt{a^2-x^2}dx=x\sqrt{a^2-x^2}+a^2\int\frac{dx}{\sqrt{a^2-x^2}}</math> | |||
כאשר את האינטגרל האחרון נלמד ב[[שיטת ההצבה]] | כאשר את האינטגרל האחרון נלמד ב[[שיטת ההצבה]]. |
גרסה אחרונה מ־11:11, 3 בנובמבר 2016
הגדרה
אינטגרציה בחלקים הוא כינוי לנוסחת האינטגרציה הבאה:
- [math]\displaystyle{ \int{f'\cdot g}=f\cdot g-\int{f\cdot g'} }[/math]
הנוסחא נובעת מיידית מנוסחת גזירת כפל:
- [math]\displaystyle{ (f\cdot g)'=f'\cdot g+g'\cdot f }[/math]
הנוסחא נכונה במידה והאינטגרלים מוגדרים, ובפרט עבור [math]\displaystyle{ f,g }[/math] בעלות נגזרות רציפות.
(אחרת, אמנם יש קדומה ל- [math]\displaystyle{ f'\cdot g+g'\cdot f }[/math] , אבל לא בהכרח ל- [math]\displaystyle{ f'\cdot g }[/math] ו- [math]\displaystyle{ g'\cdot f }[/math] בנפרד.)
דוגמאות
א. בדוגמא זו ניתן לראות שאפשר להעלים גורם אחד על-ידי גזירתו. יתכן ונדרש בדוגמאות מסוג זה לבצע את הפעולה מספר פעמים, אך בדוגמא זו הסתפקנו בפעם אחת בלבד.
[math]\displaystyle{ \int x\cos(x)dx=? }[/math]
נסמן [math]\displaystyle{ f'=\cos(x)\ ,\ g=x }[/math]
ולכן [math]\displaystyle{ f=\sin(x)\ ,\ g'=1 }[/math]
לפי נוסחת אינטגרציה בחלקים מתקיים
- [math]\displaystyle{ \int x\cos(x)dx=x\sin(x)-\int\sin(x)dx=x\sin(x)+\cos(x)+C }[/math]
ב. חזרה למקורות - בדוגמא הבאה לא ניתן להעלים גורם על-ידי גזירה, אולם חזרה לאינטגרל המקורי פותרת לנו את הבעיה.
[math]\displaystyle{ \int e^x\cos(x)dx=? }[/math]
נסמן [math]\displaystyle{ I=\int e^x\cos(x)dx }[/math]
לכן
- [math]\displaystyle{ I=e^x\cos(x)+\int e^x\sin(x)dx=e^x\cos(x)+e^x\sin(x)-\int e^x\cos(x)dx=e^x\big(\sin(x)+\cos(x)\big)-I }[/math]
ולכן
- [math]\displaystyle{ 2I=e^x\big(\sin(x)+\cos(x)\big) }[/math]
ומכאן יוצא
- [math]\displaystyle{ \int e^x\cos(x)dx=I=\frac{e^x\big(\sin(x)+\cos(x)\big)}{2}+C }[/math]
ג. בדוגמא הבאה נראה שניתן להתייחס לכפל בקבוע [math]\displaystyle{ 1 }[/math] כנגזרת של הפונקציה [math]\displaystyle{ x }[/math] ובכך "להמציא" גורם שיעזור לנו בפתרון הבעיה באמצעות אינטגרציה בחלקים.
[math]\displaystyle{ \int\sqrt{a^2-x^2}dx=? }[/math]
נסמן [math]\displaystyle{ f'=1\ ,\ g=\sqrt{a^2-x^2} }[/math]
ולכן [math]\displaystyle{ f=x\ ,\ g'=-\frac{x}{\sqrt{a^2-x^2}} }[/math]
נפעיל נוסחת אינטגרציה בחלקים:
- [math]\displaystyle{ \int\sqrt{a^2-x^2}dx=x\sqrt{a^2-x^2}+\int\frac{x^2}{\sqrt{a^2-x^2}}dx= }[/math]
- [math]\displaystyle{ =x\sqrt{a^2-x^2}+\int\frac{x^2-a^2+a^2}{\sqrt{a^2-x^2}}dx= }[/math]
- [math]\displaystyle{ =x\sqrt{a^2-x^2}-\int\sqrt{a^2-x^2}dx+a^2\int\frac{dx}{\sqrt{a^2-x^2}}= }[/math]
ולכן סה"כ, בדומה לדוגמא הקודמת
- [math]\displaystyle{ 2\int\sqrt{a^2-x^2}dx=x\sqrt{a^2-x^2}+a^2\int\frac{dx}{\sqrt{a^2-x^2}} }[/math]
כאשר את האינטגרל האחרון נלמד בשיטת ההצבה.