תרגילי חובה לא סטנדרטיים: הבדלים בין גרסאות בדף
(8 גרסאות ביניים של 2 משתמשים אינן מוצגות) | |||
שורה 8: | שורה 8: | ||
== חשבון אינפיניטיסימלי == | == חשבון אינפיניטיסימלי == | ||
* "הלמה של | '''חשבון במשתנה ממשי יחיד''' | ||
* סומביליות | * אי-שוויון הממוצעים: לכל קבוצה של מספרים ממשיים חיובים <math>\{a_1,\dots,a_n\}</math> מתקיים אי השיוויון <math>\frac{n}{\frac{1}{x_1}+\dots+\frac{1}{x_n}}\le\sqrt[n]{x_1\cdots x_n}\le\frac{\sum_{k=1}^nx_k}{n}</math>. יש שיוויון אם"ם כל האיברים שווים האחד לשני. | ||
* | * הלמה של Fekete: אם <math>a_n</math> סדרה תת-אדיטיבית, אז ל-<math>\frac{a_n}{n}</math> יש גבול במובן הרחב השווה ל<math>\inf a_n</math>). | ||
* | * המשפט של Stolz-Cesàro: אם <math>b_n</math> סידרה חיובית כך ש<math>\sum_n b_n=\infty</math> אז לכל סידרה <math>a_n</math>, <math>\limsup \frac{a_n}{b_n}\ge\limsup\frac{\sum_{k=1}^n a_k}{\sum_{k=1}^n b_k}\ge\liminf \frac{\sum_{k=1}^n a_k}{\sum_{k=1}^n b_k}\ge \liminf \frac{a_n}{b_n}</math>. | ||
* קירוב Stirling: <math>\Gamma(n+1)=n!\approx \sqrt{2\pi n}\left(\frac ne\right)^n</math>. | |||
* סומביליות Abel: אם הסכום <math>\sum_n a_n</math> קיים אז גם <math>\sum_{r\to 1^-} \sum a_n r^n</math> קיים ושווה לו; אבל יש טורים המתכנסים בסומביליות זו אך לא במובן הרגיל. | |||
* סומביליות Cesàro: לכל סדרה מתכנסת גם סדרת הממוצעים החשבוניים מתכנסת ולאותו ערך, אבל יש סדרות שהממוצעים שלהן מתכנסים אולם הן לא. סומביליות Abel גוררת סומביליות Cesàro. | |||
* משפט Tauber: אם הטור <math>\sum a_n</math> סכים-Abel ו<math>a_n=o(\frac1n)</math> אז <math>\sum_n a_n=\lim_{r\to 1^-}\sum_{n=0}^\infty a_n r^n</math>. | |||
* הלמה של Reimann-Lebesgue: אם <math>f\in \mathcal{R}([a,b])</math> אז <math>\int_a^b f(x)\sin(nx)dx,\int_a^b f(x)\cos(nx)dx\overset{\left|n\right|\to\infty}{\longrightarrow}0</math> (כלומר מקדמי הFourier שלה דועכים). | |||
== תורת החבורות == | |||
* יש אינסוף ראשוניים. יש אינסוף ראשוניים מהצורה 4n-1. יש אינסוף ראשוניים מהצורה 4n+1. |
גרסה אחרונה מ־04:57, 22 בדצמבר 2016
תרגילים שעלולים לשכוח ולא כדאי:
אלגברה לינארית
- חישוב הדטרמיננטה של מטריצת ונדרמונדה
- אין מטריצה אנטי-סימטרית הפיכה מממד אי-זוגי
חשבון אינפיניטיסימלי
חשבון במשתנה ממשי יחיד
- אי-שוויון הממוצעים: לכל קבוצה של מספרים ממשיים חיובים [math]\displaystyle{ \{a_1,\dots,a_n\} }[/math] מתקיים אי השיוויון [math]\displaystyle{ \frac{n}{\frac{1}{x_1}+\dots+\frac{1}{x_n}}\le\sqrt[n]{x_1\cdots x_n}\le\frac{\sum_{k=1}^nx_k}{n} }[/math]. יש שיוויון אם"ם כל האיברים שווים האחד לשני.
- הלמה של Fekete: אם [math]\displaystyle{ a_n }[/math] סדרה תת-אדיטיבית, אז ל-[math]\displaystyle{ \frac{a_n}{n} }[/math] יש גבול במובן הרחב השווה ל[math]\displaystyle{ \inf a_n }[/math]).
- המשפט של Stolz-Cesàro: אם [math]\displaystyle{ b_n }[/math] סידרה חיובית כך ש[math]\displaystyle{ \sum_n b_n=\infty }[/math] אז לכל סידרה [math]\displaystyle{ a_n }[/math], [math]\displaystyle{ \limsup \frac{a_n}{b_n}\ge\limsup\frac{\sum_{k=1}^n a_k}{\sum_{k=1}^n b_k}\ge\liminf \frac{\sum_{k=1}^n a_k}{\sum_{k=1}^n b_k}\ge \liminf \frac{a_n}{b_n} }[/math].
- קירוב Stirling: [math]\displaystyle{ \Gamma(n+1)=n!\approx \sqrt{2\pi n}\left(\frac ne\right)^n }[/math].
- סומביליות Abel: אם הסכום [math]\displaystyle{ \sum_n a_n }[/math] קיים אז גם [math]\displaystyle{ \sum_{r\to 1^-} \sum a_n r^n }[/math] קיים ושווה לו; אבל יש טורים המתכנסים בסומביליות זו אך לא במובן הרגיל.
- סומביליות Cesàro: לכל סדרה מתכנסת גם סדרת הממוצעים החשבוניים מתכנסת ולאותו ערך, אבל יש סדרות שהממוצעים שלהן מתכנסים אולם הן לא. סומביליות Abel גוררת סומביליות Cesàro.
- משפט Tauber: אם הטור [math]\displaystyle{ \sum a_n }[/math] סכים-Abel ו[math]\displaystyle{ a_n=o(\frac1n) }[/math] אז [math]\displaystyle{ \sum_n a_n=\lim_{r\to 1^-}\sum_{n=0}^\infty a_n r^n }[/math].
- הלמה של Reimann-Lebesgue: אם [math]\displaystyle{ f\in \mathcal{R}([a,b]) }[/math] אז [math]\displaystyle{ \int_a^b f(x)\sin(nx)dx,\int_a^b f(x)\cos(nx)dx\overset{\left|n\right|\to\infty}{\longrightarrow}0 }[/math] (כלומר מקדמי הFourier שלה דועכים).
תורת החבורות
- יש אינסוף ראשוניים. יש אינסוף ראשוניים מהצורה 4n-1. יש אינסוף ראשוניים מהצורה 4n+1.